用明胶甲基丙烯酰水凝胶联合淫羊藿苷和掺镁生物活性玻璃增强软骨修复。

IF 4.5 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Shiyao Liao, Kai Zhou, Yao Kang, Tingxiao Zhao, Yicheng Lin, Jun Lv, Danjie Zhu
{"title":"用明胶甲基丙烯酰水凝胶联合淫羊藿苷和掺镁生物活性玻璃增强软骨修复。","authors":"Shiyao Liao, Kai Zhou, Yao Kang, Tingxiao Zhao, Yicheng Lin, Jun Lv, Danjie Zhu","doi":"10.1080/21691401.2025.2490677","DOIUrl":null,"url":null,"abstract":"<p><p>Cartilage repair remains challenging due to limited self-healing, poor biocompatibility, and insufficient mechanical properties of current materials. To overcome these issues, we developed a multifunctional composite hydrogel by integrating gelatine methacrylate (GelMA) with magnesium-doped bioactive glass (Mg-BG) and icariin (ICA). SEM analysis revealed that pure GelMA exhibited a highly porous yet loosely organized structure, whereas the addition of Mg-BG and ICA produced a denser, more interconnected porous network that enhances cell adhesion and nutrient diffusion. <i>In vitro</i>, the ICA/Mg-BG/GelMA hydrogel achieved a swelling ratio up to 430% and maintained cell viability above 80% over 5 days. Moreover, qRT-PCR and immunohistochemical analyses demonstrated that the composite hydrogel upregulated chondrogenic markers (SOX9, ACAN, and COL2A1) compared with GelMA alone. Specifically, it downregulates M1 pro-inflammatory markers (CCR7, iNOS, CD86) and upregulates M2 anti-inflammatory markers (ARG1, CD163, CD206), thereby creating a regenerative microenvironment. These results indicate that the synergistic combination of GelMA, Mg-BG, and ICA not only improves the scaffold's mechanical support but also enhances its biological functionality, offering a promising strategy for cartilage repair. Future studies will focus on <i>in vivo</i> validation to further assess its clinical potential.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"181-193"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced cartilage repair using gelatin methacryloyl hydrogels combined with icariin and magnesium-doped bioactive glass.\",\"authors\":\"Shiyao Liao, Kai Zhou, Yao Kang, Tingxiao Zhao, Yicheng Lin, Jun Lv, Danjie Zhu\",\"doi\":\"10.1080/21691401.2025.2490677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cartilage repair remains challenging due to limited self-healing, poor biocompatibility, and insufficient mechanical properties of current materials. To overcome these issues, we developed a multifunctional composite hydrogel by integrating gelatine methacrylate (GelMA) with magnesium-doped bioactive glass (Mg-BG) and icariin (ICA). SEM analysis revealed that pure GelMA exhibited a highly porous yet loosely organized structure, whereas the addition of Mg-BG and ICA produced a denser, more interconnected porous network that enhances cell adhesion and nutrient diffusion. <i>In vitro</i>, the ICA/Mg-BG/GelMA hydrogel achieved a swelling ratio up to 430% and maintained cell viability above 80% over 5 days. Moreover, qRT-PCR and immunohistochemical analyses demonstrated that the composite hydrogel upregulated chondrogenic markers (SOX9, ACAN, and COL2A1) compared with GelMA alone. Specifically, it downregulates M1 pro-inflammatory markers (CCR7, iNOS, CD86) and upregulates M2 anti-inflammatory markers (ARG1, CD163, CD206), thereby creating a regenerative microenvironment. These results indicate that the synergistic combination of GelMA, Mg-BG, and ICA not only improves the scaffold's mechanical support but also enhances its biological functionality, offering a promising strategy for cartilage repair. Future studies will focus on <i>in vivo</i> validation to further assess its clinical potential.</p>\",\"PeriodicalId\":8736,\"journal\":{\"name\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"volume\":\"53 1\",\"pages\":\"181-193\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21691401.2025.2490677\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2025.2490677","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于现有材料的自我修复能力有限、生物相容性差和机械性能不足,软骨修复仍然具有挑战性。为了克服这些问题,我们开发了一种多功能复合水凝胶,将甲基丙烯酸明胶(GelMA)与掺镁生物活性玻璃(Mg-BG)和淫羊羊苷(ICA)结合在一起。SEM分析显示,纯GelMA呈现出高度多孔但组织松散的结构,而Mg-BG和ICA的加入产生了更密集,更相互连接的多孔网络,增强了细胞粘附和营养物质扩散。在体外,ICA/Mg-BG/GelMA水凝胶的肿胀率高达430%,并在5天内将细胞存活率维持在80%以上。此外,qRT-PCR和免疫组织化学分析表明,与单独GelMA相比,复合水凝胶上调了软骨生成标志物(SOX9、ACAN和COL2A1)。具体来说,它下调M1促炎标志物(CCR7、iNOS、CD86),上调M2抗炎标志物(ARG1、CD163、CD206),从而创造再生微环境。这些结果表明,GelMA、Mg-BG和ICA的协同组合不仅提高了支架的机械支持,而且增强了支架的生物功能,为软骨修复提供了一种很有前景的策略。未来的研究将集中在体内验证,以进一步评估其临床潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced cartilage repair using gelatin methacryloyl hydrogels combined with icariin and magnesium-doped bioactive glass.

Cartilage repair remains challenging due to limited self-healing, poor biocompatibility, and insufficient mechanical properties of current materials. To overcome these issues, we developed a multifunctional composite hydrogel by integrating gelatine methacrylate (GelMA) with magnesium-doped bioactive glass (Mg-BG) and icariin (ICA). SEM analysis revealed that pure GelMA exhibited a highly porous yet loosely organized structure, whereas the addition of Mg-BG and ICA produced a denser, more interconnected porous network that enhances cell adhesion and nutrient diffusion. In vitro, the ICA/Mg-BG/GelMA hydrogel achieved a swelling ratio up to 430% and maintained cell viability above 80% over 5 days. Moreover, qRT-PCR and immunohistochemical analyses demonstrated that the composite hydrogel upregulated chondrogenic markers (SOX9, ACAN, and COL2A1) compared with GelMA alone. Specifically, it downregulates M1 pro-inflammatory markers (CCR7, iNOS, CD86) and upregulates M2 anti-inflammatory markers (ARG1, CD163, CD206), thereby creating a regenerative microenvironment. These results indicate that the synergistic combination of GelMA, Mg-BG, and ICA not only improves the scaffold's mechanical support but also enhances its biological functionality, offering a promising strategy for cartilage repair. Future studies will focus on in vivo validation to further assess its clinical potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Cells, Nanomedicine, and Biotechnology
Artificial Cells, Nanomedicine, and Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-ENGINEERING, BIOMEDICAL
CiteScore
10.90
自引率
0.00%
发文量
48
审稿时长
20 weeks
期刊介绍: Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信