Lillian M. Barten , Johnathan G. Crandall , Dan Xie , Jose Serate , Evan Handowski , Annie Jen , Katherine A. Overmyer , Joshua J. Coon , Chris Todd Hittinger , Robert Landick , Yaoping Zhang , Trey K. Sato
{"title":"pH值调整增加了抑制柳枝稷水解物的生物燃料生产。","authors":"Lillian M. Barten , Johnathan G. Crandall , Dan Xie , Jose Serate , Evan Handowski , Annie Jen , Katherine A. Overmyer , Joshua J. Coon , Chris Todd Hittinger , Robert Landick , Yaoping Zhang , Trey K. Sato","doi":"10.1016/j.biortech.2025.132651","DOIUrl":null,"url":null,"abstract":"<div><div>Biofuels derived from renewable and sustainable lignocellulosic biomass, such as switchgrass, offer a promising means to limit greenhouse gas emissions. However, switchgrass grown under drought conditions contains high levels of chemical compounds that inhibit microbial conversion to biofuels. Fermentation of drought switchgrass hydrolysates by engineered <em>Saccharomyces cerevisiae</em> and <em>Zymomonas mobilis</em> results in lower ethanol production than does fermentation of hydrolyzed switchgrass from a typical rainfall year<em>.</em> Here, it is demonstrated that this inhibitory effect can be alleviated by altering the pH of drought switchgrass hydrolysates produced by two different pretreatment methods: Ammonia Fiber Expansion (AFEX) and Soaking in Aqueous Ammonia (SAA). Fermentation rates and biofuel production by <em>Saccharomyces cerevisiae</em> and <em>Zymomonas mobilis</em> were higher at pH 5.8 than at pH 5.0 from all feedstock years and following both pretreatment methods. SAA pretreatment of drought switchgrass furthermore enabled increased fermentation rates and biofuel titers compared to AFEX pretreatment. A synthetic mimic of switchgrass hydrolysate was developed and identified relief from pH-dependent inhibition by lignocellulose-derived inhibitors as the cause of increased biofuel production above a pH of 5.0. These results demonstrate that SAA pretreatment and pH adjustment can significantly improve fermentation and biofuel production from inhibitory feedstocks by industrial microorganisms.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"432 ","pages":"Article 132651"},"PeriodicalIF":9.7000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pH adjustment increases biofuel production from inhibitory switchgrass hydrolysates\",\"authors\":\"Lillian M. Barten , Johnathan G. Crandall , Dan Xie , Jose Serate , Evan Handowski , Annie Jen , Katherine A. Overmyer , Joshua J. Coon , Chris Todd Hittinger , Robert Landick , Yaoping Zhang , Trey K. Sato\",\"doi\":\"10.1016/j.biortech.2025.132651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biofuels derived from renewable and sustainable lignocellulosic biomass, such as switchgrass, offer a promising means to limit greenhouse gas emissions. However, switchgrass grown under drought conditions contains high levels of chemical compounds that inhibit microbial conversion to biofuels. Fermentation of drought switchgrass hydrolysates by engineered <em>Saccharomyces cerevisiae</em> and <em>Zymomonas mobilis</em> results in lower ethanol production than does fermentation of hydrolyzed switchgrass from a typical rainfall year<em>.</em> Here, it is demonstrated that this inhibitory effect can be alleviated by altering the pH of drought switchgrass hydrolysates produced by two different pretreatment methods: Ammonia Fiber Expansion (AFEX) and Soaking in Aqueous Ammonia (SAA). Fermentation rates and biofuel production by <em>Saccharomyces cerevisiae</em> and <em>Zymomonas mobilis</em> were higher at pH 5.8 than at pH 5.0 from all feedstock years and following both pretreatment methods. SAA pretreatment of drought switchgrass furthermore enabled increased fermentation rates and biofuel titers compared to AFEX pretreatment. A synthetic mimic of switchgrass hydrolysate was developed and identified relief from pH-dependent inhibition by lignocellulose-derived inhibitors as the cause of increased biofuel production above a pH of 5.0. These results demonstrate that SAA pretreatment and pH adjustment can significantly improve fermentation and biofuel production from inhibitory feedstocks by industrial microorganisms.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"432 \",\"pages\":\"Article 132651\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852425006170\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425006170","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
pH adjustment increases biofuel production from inhibitory switchgrass hydrolysates
Biofuels derived from renewable and sustainable lignocellulosic biomass, such as switchgrass, offer a promising means to limit greenhouse gas emissions. However, switchgrass grown under drought conditions contains high levels of chemical compounds that inhibit microbial conversion to biofuels. Fermentation of drought switchgrass hydrolysates by engineered Saccharomyces cerevisiae and Zymomonas mobilis results in lower ethanol production than does fermentation of hydrolyzed switchgrass from a typical rainfall year. Here, it is demonstrated that this inhibitory effect can be alleviated by altering the pH of drought switchgrass hydrolysates produced by two different pretreatment methods: Ammonia Fiber Expansion (AFEX) and Soaking in Aqueous Ammonia (SAA). Fermentation rates and biofuel production by Saccharomyces cerevisiae and Zymomonas mobilis were higher at pH 5.8 than at pH 5.0 from all feedstock years and following both pretreatment methods. SAA pretreatment of drought switchgrass furthermore enabled increased fermentation rates and biofuel titers compared to AFEX pretreatment. A synthetic mimic of switchgrass hydrolysate was developed and identified relief from pH-dependent inhibition by lignocellulose-derived inhibitors as the cause of increased biofuel production above a pH of 5.0. These results demonstrate that SAA pretreatment and pH adjustment can significantly improve fermentation and biofuel production from inhibitory feedstocks by industrial microorganisms.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.