RSNA 2023腹部创伤AI挑战高性能机器学习模型在脾损伤CT检测和分级中的外部验证

IF 2.3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Anish Kirpalani, Théo Viel, Zixuan Hu, Hui Ming Lin, Sebastiaan Hermans, David Gomez, Robert Moreland, Shobhit Mathur, Aaditeya Jhaveri, Matthew Wu, Paraskevi A Vlachou, Monica Tafur, Ervin Sejdić, Errol Colak
{"title":"RSNA 2023腹部创伤AI挑战高性能机器学习模型在脾损伤CT检测和分级中的外部验证","authors":"Anish Kirpalani, Théo Viel, Zixuan Hu, Hui Ming Lin, Sebastiaan Hermans, David Gomez, Robert Moreland, Shobhit Mathur, Aaditeya Jhaveri, Matthew Wu, Paraskevi A Vlachou, Monica Tafur, Ervin Sejdić, Errol Colak","doi":"10.1007/s00261-025-04910-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to validate the performance of an award-winning machine learning (ML) model from the Radiological Society of North America (RSNA) 2023 Abdominal Trauma AI Challenge in detecting splenic injuries on CT scans using a large, geographically and temporally distinct external dataset.</p><p><strong>Method: </strong>A single-center retrospective study was conducted using an external dataset comprising 1216 CT scans (608 positive and 608 negative for splenic injuries). The ML model, trained on the RSNA Abdominal Traumatic Injury CT (RATIC) dataset, employs a multi-component pipeline including 2D MaxVit, 2.5D CoatNet with LSTM for study-level predictions. Model performance was evaluated using sensitivity, specificity, PPV, NPV, accuracy, F1 score, and AUC.</p><p><strong>Results: </strong>The ML model achieved an AUC of 0.931 (95% CI: 0.917, 0.945) for binary classification of splenic injuries, with an accuracy of 0.849 (95% CI: 0.827, 0.868), sensitivity of 0.747 (95% CI: 0.711, 0.780), and specificity of 0.951 (95% CI: 0.930, 0.965). For high-grade splenic injuries, the model achieved an AUC of 0.950 (95% CI: 0.932, 0.968), accuracy of 0.928 (95% CI: 0.912, 0.941), sensitivity of 0.719 (95% CI: 0.643, 0.784), and specificity of 0.958 (95% CI: 0.944, 0.968).</p><p><strong>Conclusion: </strong>The ML model shows strong, reliable performance and generalizability in detecting and grading splenic injuries on CT scans. This supports its potential clinical application, particularly for quick and accurate diagnosis in splenic trauma patients, and highlights the value of RSNA AI challenges in advancing clinical research and applications in medical imaging.</p>","PeriodicalId":7126,"journal":{"name":"Abdominal Radiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"External validation of an RSNA 2023 Abdominal Trauma AI Challenge high performing machine learning model in the detection and grading of splenic injuries on CT.\",\"authors\":\"Anish Kirpalani, Théo Viel, Zixuan Hu, Hui Ming Lin, Sebastiaan Hermans, David Gomez, Robert Moreland, Shobhit Mathur, Aaditeya Jhaveri, Matthew Wu, Paraskevi A Vlachou, Monica Tafur, Ervin Sejdić, Errol Colak\",\"doi\":\"10.1007/s00261-025-04910-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study aims to validate the performance of an award-winning machine learning (ML) model from the Radiological Society of North America (RSNA) 2023 Abdominal Trauma AI Challenge in detecting splenic injuries on CT scans using a large, geographically and temporally distinct external dataset.</p><p><strong>Method: </strong>A single-center retrospective study was conducted using an external dataset comprising 1216 CT scans (608 positive and 608 negative for splenic injuries). The ML model, trained on the RSNA Abdominal Traumatic Injury CT (RATIC) dataset, employs a multi-component pipeline including 2D MaxVit, 2.5D CoatNet with LSTM for study-level predictions. Model performance was evaluated using sensitivity, specificity, PPV, NPV, accuracy, F1 score, and AUC.</p><p><strong>Results: </strong>The ML model achieved an AUC of 0.931 (95% CI: 0.917, 0.945) for binary classification of splenic injuries, with an accuracy of 0.849 (95% CI: 0.827, 0.868), sensitivity of 0.747 (95% CI: 0.711, 0.780), and specificity of 0.951 (95% CI: 0.930, 0.965). For high-grade splenic injuries, the model achieved an AUC of 0.950 (95% CI: 0.932, 0.968), accuracy of 0.928 (95% CI: 0.912, 0.941), sensitivity of 0.719 (95% CI: 0.643, 0.784), and specificity of 0.958 (95% CI: 0.944, 0.968).</p><p><strong>Conclusion: </strong>The ML model shows strong, reliable performance and generalizability in detecting and grading splenic injuries on CT scans. This supports its potential clinical application, particularly for quick and accurate diagnosis in splenic trauma patients, and highlights the value of RSNA AI challenges in advancing clinical research and applications in medical imaging.</p>\",\"PeriodicalId\":7126,\"journal\":{\"name\":\"Abdominal Radiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abdominal Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00261-025-04910-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abdominal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00261-025-04910-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在验证来自北美放射学会(RSNA) 2023腹部创伤AI挑战赛的获奖机器学习(ML)模型的性能,该模型使用大型、地理和时间上不同的外部数据集在CT扫描上检测脾脏损伤。方法:使用外部数据集进行单中心回顾性研究,该数据集包括1216个CT扫描(608个脾损伤阳性和608个阴性)。在RSNA腹部创伤性损伤CT (RATIC)数据集上训练的ML模型采用多组分管道,包括2D MaxVit, 2.5D CoatNet和LSTM,用于研究水平的预测。通过敏感性、特异性、PPV、NPV、准确性、F1评分和AUC来评估模型的性能。结果:ML模型对脾损伤进行二元分类的AUC为0.931 (95% CI: 0.917, 0.945),准确率为0.849 (95% CI: 0.827, 0.868),敏感性为0.747 (95% CI: 0.711, 0.780),特异性为0.951 (95% CI: 0.930, 0.965)。对于高度脾损伤,该模型的AUC为0.950 (95% CI: 0.932, 0.968),准确度为0.928 (95% CI: 0.912, 0.941),敏感性为0.719 (95% CI: 0.643, 0.784),特异性为0.958 (95% CI: 0.944, 0.968)。结论:ML模型对脾损伤的CT检测和分级具有较强的可靠性和通用性。这支持了其潜在的临床应用,特别是对脾外伤患者的快速准确诊断,并突出了RSNA AI在推进临床研究和医学成像应用方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
External validation of an RSNA 2023 Abdominal Trauma AI Challenge high performing machine learning model in the detection and grading of splenic injuries on CT.

Purpose: This study aims to validate the performance of an award-winning machine learning (ML) model from the Radiological Society of North America (RSNA) 2023 Abdominal Trauma AI Challenge in detecting splenic injuries on CT scans using a large, geographically and temporally distinct external dataset.

Method: A single-center retrospective study was conducted using an external dataset comprising 1216 CT scans (608 positive and 608 negative for splenic injuries). The ML model, trained on the RSNA Abdominal Traumatic Injury CT (RATIC) dataset, employs a multi-component pipeline including 2D MaxVit, 2.5D CoatNet with LSTM for study-level predictions. Model performance was evaluated using sensitivity, specificity, PPV, NPV, accuracy, F1 score, and AUC.

Results: The ML model achieved an AUC of 0.931 (95% CI: 0.917, 0.945) for binary classification of splenic injuries, with an accuracy of 0.849 (95% CI: 0.827, 0.868), sensitivity of 0.747 (95% CI: 0.711, 0.780), and specificity of 0.951 (95% CI: 0.930, 0.965). For high-grade splenic injuries, the model achieved an AUC of 0.950 (95% CI: 0.932, 0.968), accuracy of 0.928 (95% CI: 0.912, 0.941), sensitivity of 0.719 (95% CI: 0.643, 0.784), and specificity of 0.958 (95% CI: 0.944, 0.968).

Conclusion: The ML model shows strong, reliable performance and generalizability in detecting and grading splenic injuries on CT scans. This supports its potential clinical application, particularly for quick and accurate diagnosis in splenic trauma patients, and highlights the value of RSNA AI challenges in advancing clinical research and applications in medical imaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Abdominal Radiology
Abdominal Radiology Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.20
自引率
8.30%
发文量
334
期刊介绍: Abdominal Radiology seeks to meet the professional needs of the abdominal radiologist by publishing clinically pertinent original, review and practice related articles on the gastrointestinal and genitourinary tracts and abdominal interventional and radiologic procedures. Case reports are generally not accepted unless they are the first report of a new disease or condition, or part of a special solicited section. Reasons to Publish Your Article in Abdominal Radiology: · Official journal of the Society of Abdominal Radiology (SAR) · Published in Cooperation with: European Society of Gastrointestinal and Abdominal Radiology (ESGAR) European Society of Urogenital Radiology (ESUR) Asian Society of Abdominal Radiology (ASAR) · Efficient handling and Expeditious review · Author feedback is provided in a mentoring style · Global readership · Readers can earn CME credits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信