利用光研究和控制多巴胺能神经传递的分子工具。

IF 10.9 1区 医学 Q1 CHEMISTRY, MEDICINAL
Galyna Maleeva, Carlo Matera, Silvia Roda, Alessio Colleoni, Marco De Amici, Pau Gorostiza
{"title":"利用光研究和控制多巴胺能神经传递的分子工具。","authors":"Galyna Maleeva, Carlo Matera, Silvia Roda, Alessio Colleoni, Marco De Amici, Pau Gorostiza","doi":"10.1002/med.22112","DOIUrl":null,"url":null,"abstract":"<p><p>Dopaminergic neurotransmission is involved in several important brain functions, such as motor control, learning, reward-motivated behavior, and emotions. Dysfunctions of dopaminergic system may lead to the development of various neurological and psychiatric disorders, like Parkinson's disease, schizophrenia, depression, and addictions. Despite years of sustained research, it is not fully established how dopaminergic neurotransmission governs these important functions through a relatively small number of neurons that release dopamine. Light-driven neurotechnologies, based on the use of small light-regulated molecules or overexpression of light-regulated proteins in neurons, have greatly contributed to the advancement of our understanding of dopaminergic circuits and our ability to control them selectively. Here, we overview the current state-of-the-art of light-driven control of dopaminergic neurotransmission. While we provide a concise guideline for the readers interested in pharmacological, pharmacogenetic, and optogenetic approaches to modulate dopaminergic neurotransmission, our primary focus is on the usage of photocaged and photo-switchable small dopaminergic molecules. We argue that photopharmacology, photoswitchable molecules of varied modalities, can be employed in a wide range of experimental paradigms, providing unprecedent insights into the principles of dopaminergic control, and represent the most promising light-based therapeutic approach for spatiotemporally precise correction of dopamine-related neural functions and pathologies.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":" ","pages":""},"PeriodicalIF":10.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Tools to Study and Control Dopaminergic Neurotransmission With Light.\",\"authors\":\"Galyna Maleeva, Carlo Matera, Silvia Roda, Alessio Colleoni, Marco De Amici, Pau Gorostiza\",\"doi\":\"10.1002/med.22112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dopaminergic neurotransmission is involved in several important brain functions, such as motor control, learning, reward-motivated behavior, and emotions. Dysfunctions of dopaminergic system may lead to the development of various neurological and psychiatric disorders, like Parkinson's disease, schizophrenia, depression, and addictions. Despite years of sustained research, it is not fully established how dopaminergic neurotransmission governs these important functions through a relatively small number of neurons that release dopamine. Light-driven neurotechnologies, based on the use of small light-regulated molecules or overexpression of light-regulated proteins in neurons, have greatly contributed to the advancement of our understanding of dopaminergic circuits and our ability to control them selectively. Here, we overview the current state-of-the-art of light-driven control of dopaminergic neurotransmission. While we provide a concise guideline for the readers interested in pharmacological, pharmacogenetic, and optogenetic approaches to modulate dopaminergic neurotransmission, our primary focus is on the usage of photocaged and photo-switchable small dopaminergic molecules. We argue that photopharmacology, photoswitchable molecules of varied modalities, can be employed in a wide range of experimental paradigms, providing unprecedent insights into the principles of dopaminergic control, and represent the most promising light-based therapeutic approach for spatiotemporally precise correction of dopamine-related neural functions and pathologies.</p>\",\"PeriodicalId\":207,\"journal\":{\"name\":\"Medicinal Research Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicinal Research Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/med.22112\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/med.22112","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

多巴胺能神经传递涉及几个重要的大脑功能,如运动控制、学习、奖励动机行为和情绪。多巴胺能系统功能障碍可导致各种神经和精神疾病的发展,如帕金森病、精神分裂症、抑郁症和成瘾。尽管经过多年的持续研究,多巴胺能神经传递如何通过释放多巴胺的相对较少的神经元来控制这些重要的功能还没有完全确定。基于使用小的光调节分子或在神经元中过度表达光调节蛋白的光驱动神经技术,极大地促进了我们对多巴胺能回路的理解和我们有选择性地控制它们的能力。在这里,我们概述了当前的最新技术的光驱动控制多巴胺能神经传递。虽然我们为对调节多巴胺能神经传递的药理学、药物遗传学和光遗传学方法感兴趣的读者提供了简明的指南,但我们的主要重点是光笼化和光可切换小多巴胺能分子的使用。我们认为,光药理学,各种形态的光开关分子,可以应用于广泛的实验范式,提供了对多巴胺能控制原理的前所未有的见解,并代表了最有前途的基于光的治疗方法,用于时空精确校正多巴胺相关的神经功能和病理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular Tools to Study and Control Dopaminergic Neurotransmission With Light.

Dopaminergic neurotransmission is involved in several important brain functions, such as motor control, learning, reward-motivated behavior, and emotions. Dysfunctions of dopaminergic system may lead to the development of various neurological and psychiatric disorders, like Parkinson's disease, schizophrenia, depression, and addictions. Despite years of sustained research, it is not fully established how dopaminergic neurotransmission governs these important functions through a relatively small number of neurons that release dopamine. Light-driven neurotechnologies, based on the use of small light-regulated molecules or overexpression of light-regulated proteins in neurons, have greatly contributed to the advancement of our understanding of dopaminergic circuits and our ability to control them selectively. Here, we overview the current state-of-the-art of light-driven control of dopaminergic neurotransmission. While we provide a concise guideline for the readers interested in pharmacological, pharmacogenetic, and optogenetic approaches to modulate dopaminergic neurotransmission, our primary focus is on the usage of photocaged and photo-switchable small dopaminergic molecules. We argue that photopharmacology, photoswitchable molecules of varied modalities, can be employed in a wide range of experimental paradigms, providing unprecedent insights into the principles of dopaminergic control, and represent the most promising light-based therapeutic approach for spatiotemporally precise correction of dopamine-related neural functions and pathologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
29.30
自引率
0.00%
发文量
52
审稿时长
2 months
期刊介绍: Medicinal Research Reviews is dedicated to publishing timely and critical reviews, as well as opinion-based articles, covering a broad spectrum of topics related to medicinal research. These contributions are authored by individuals who have made significant advancements in the field. Encompassing a wide range of subjects, suitable topics include, but are not limited to, the underlying pathophysiology of crucial diseases and disease vectors, therapeutic approaches for diverse medical conditions, properties of molecular targets for therapeutic agents, innovative methodologies facilitating therapy discovery, genomics and proteomics, structure-activity correlations of drug series, development of new imaging and diagnostic tools, drug metabolism, drug delivery, and comprehensive examinations of the chemical, pharmacological, pharmacokinetic, pharmacodynamic, and clinical characteristics of significant drugs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信