X染色体在复杂性状遗传中的作用及其剂量补偿机制。

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY
Yu Fu, Aino Kenttämies, Sanni Ruotsalainen, Matti Pirinen, Taru Tukiainen
{"title":"X染色体在复杂性状遗传中的作用及其剂量补偿机制。","authors":"Yu Fu, Aino Kenttämies, Sanni Ruotsalainen, Matti Pirinen, Taru Tukiainen","doi":"10.1016/j.ajhg.2025.04.004","DOIUrl":null,"url":null,"abstract":"<p><p>The X chromosome (chrX) is often excluded from genome-wide association studies due to its unique biology complicating the analysis and interpretation of genetic data. Consequently, the influence of chrX on human complex traits remains debated. Here, we systematically assessed the relevance of chrX and the effect of its biology on complex traits by analyzing 48 quantitative traits in 343,695 individuals in UK Biobank with replication in 412,181 individuals from FinnGen. We show that, in the general population, chrX contributes to complex trait heritability at a rate of 3% of the autosomal heritability, consistent with the amount of genetic variation observed in chrX. We find that a pronounced male bias in chrX heritability supports the presence of near-complete dosage compensation between sexes through X chromosome inactivation (XCI). However, we also find subtle yet plausible evidence of escape from XCI contributing to human height. Assuming full XCI, the observed chrX contribution to complex trait heritability in both sexes is greater than expected given the presence of only a single active copy of chrX, mirroring potential dosage compensation between chrX and the autosomes. We find this enhanced contribution attributable to systematically larger active allele effects from chrX compared to autosomes in both sexes, independent of allele frequency and variant deleteriousness. Together, these findings support a model in which the two dosage-compensation mechanisms work in concert to balance the influence of chrX across the population while preserving sex-specific differences at a manageable level. Overall, our study advocates for more comprehensive locus discovery efforts in chrX.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of X chromosome and dosage-compensation mechanisms in complex trait genetics.\",\"authors\":\"Yu Fu, Aino Kenttämies, Sanni Ruotsalainen, Matti Pirinen, Taru Tukiainen\",\"doi\":\"10.1016/j.ajhg.2025.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The X chromosome (chrX) is often excluded from genome-wide association studies due to its unique biology complicating the analysis and interpretation of genetic data. Consequently, the influence of chrX on human complex traits remains debated. Here, we systematically assessed the relevance of chrX and the effect of its biology on complex traits by analyzing 48 quantitative traits in 343,695 individuals in UK Biobank with replication in 412,181 individuals from FinnGen. We show that, in the general population, chrX contributes to complex trait heritability at a rate of 3% of the autosomal heritability, consistent with the amount of genetic variation observed in chrX. We find that a pronounced male bias in chrX heritability supports the presence of near-complete dosage compensation between sexes through X chromosome inactivation (XCI). However, we also find subtle yet plausible evidence of escape from XCI contributing to human height. Assuming full XCI, the observed chrX contribution to complex trait heritability in both sexes is greater than expected given the presence of only a single active copy of chrX, mirroring potential dosage compensation between chrX and the autosomes. We find this enhanced contribution attributable to systematically larger active allele effects from chrX compared to autosomes in both sexes, independent of allele frequency and variant deleteriousness. Together, these findings support a model in which the two dosage-compensation mechanisms work in concert to balance the influence of chrX across the population while preserving sex-specific differences at a manageable level. Overall, our study advocates for more comprehensive locus discovery efforts in chrX.</p>\",\"PeriodicalId\":7659,\"journal\":{\"name\":\"American journal of human genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajhg.2025.04.004\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.04.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

由于其独特的生物学特性使遗传数据的分析和解释复杂化,X染色体(chrX)经常被排除在全基因组关联研究之外。因此,chrX对人类复杂性状的影响仍存在争议。本文通过分析英国生物银行343,695个个体的48个数量性状,并在FinnGen的412,181个个体中进行复制,系统地评估了chrX的相关性及其生物学对复杂性状的影响。我们发现,在一般人群中,chrX对复杂性状遗传率的贡献占常染色体遗传率的3%,这与在chrX中观察到的遗传变异量一致。我们发现在chrX遗传力上明显的男性偏倚支持通过X染色体失活(XCI)在两性之间存在近乎完全的剂量补偿。然而,我们也发现了微妙而可信的证据,证明逃离XCI有助于人类的身高。假设完全XCI,观察到的chrX对两性复杂性状遗传力的贡献大于预期,因为只有一个chrX的活性拷贝存在,反映了chrX和常染色体之间潜在的剂量补偿。我们发现,与常染色体相比,这种增强的贡献可归因于两性中来自chrX的系统性更大的活性等位基因效应,与等位基因频率和变异有害性无关。总之,这些发现支持了一个模型,在这个模型中,两种剂量补偿机制协同工作,以平衡chrX在人群中的影响,同时将性别特异性差异保持在可管理的水平。总的来说,我们的研究提倡在chrX中进行更全面的位点发现工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of X chromosome and dosage-compensation mechanisms in complex trait genetics.

The X chromosome (chrX) is often excluded from genome-wide association studies due to its unique biology complicating the analysis and interpretation of genetic data. Consequently, the influence of chrX on human complex traits remains debated. Here, we systematically assessed the relevance of chrX and the effect of its biology on complex traits by analyzing 48 quantitative traits in 343,695 individuals in UK Biobank with replication in 412,181 individuals from FinnGen. We show that, in the general population, chrX contributes to complex trait heritability at a rate of 3% of the autosomal heritability, consistent with the amount of genetic variation observed in chrX. We find that a pronounced male bias in chrX heritability supports the presence of near-complete dosage compensation between sexes through X chromosome inactivation (XCI). However, we also find subtle yet plausible evidence of escape from XCI contributing to human height. Assuming full XCI, the observed chrX contribution to complex trait heritability in both sexes is greater than expected given the presence of only a single active copy of chrX, mirroring potential dosage compensation between chrX and the autosomes. We find this enhanced contribution attributable to systematically larger active allele effects from chrX compared to autosomes in both sexes, independent of allele frequency and variant deleteriousness. Together, these findings support a model in which the two dosage-compensation mechanisms work in concert to balance the influence of chrX across the population while preserving sex-specific differences at a manageable level. Overall, our study advocates for more comprehensive locus discovery efforts in chrX.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信