电合成过氧化氢的碳基催化剂。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-05-10 DOI:10.1002/cssc.202500675
Ting Lv, Huashuo Jin, Zhiyuan Sang, Zhenxin Li, Xia Li, Lin Wang, Shu Cai, Ji Liang, Qin Li, Xiao Yan
{"title":"电合成过氧化氢的碳基催化剂。","authors":"Ting Lv, Huashuo Jin, Zhiyuan Sang, Zhenxin Li, Xia Li, Lin Wang, Shu Cai, Ji Liang, Qin Li, Xiao Yan","doi":"10.1002/cssc.202500675","DOIUrl":null,"url":null,"abstract":"<p><p>Hydorgen peroxide (H<sub>2</sub>O<sub>2</sub>) is an eco-friendly and versatile chemical with extensive applications across various inductrial and househould scenario. Electrosynthesis of H<sub>2</sub>O<sub>2</sub> via the two-electron oxygen reduction reaction (2e<sup>-</sup> ORR) offers an efficient and sustainable alterantives to conventional anthraquinone process. Carbon-based catalysts have garnered significant attention in this field due to their intrinsic advantages, including cost-effectiveness, structural tunability, high electrical conductivity, and abundant surface active sites. However, achieving industrially viable H<sub>2</sub>O<sub>2</sub> productivity and selectivity demands a holistic optimization strategy encompassing catalyst design, electrode architectures, electrolyte modulation, and reactor configuration. This review systematically examines recent advances in carbon-based catalysts for electrochemical H<sub>2</sub>O<sub>2</sub> generation, addressing fundamental mechanisms of 2e<sup>-</sup> ORR pathways; controlled synthesis strategies; and system-level optimizations of electrodes, electrolytes and reactors. State-of-the-art in situ/operando characterization techniques and machine learning-driven computational models are highlighted as indispensable tools for unraveling reaction mechanisms and accelerating catalyst discovery. Finally, Challenges and future research directions for advancing carbon-based electrocatalysts toward practical applications are critically discussed.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2500675"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon-Based Catalysts for Electrosynthesis of Hydrogen Peroxide.\",\"authors\":\"Ting Lv, Huashuo Jin, Zhiyuan Sang, Zhenxin Li, Xia Li, Lin Wang, Shu Cai, Ji Liang, Qin Li, Xiao Yan\",\"doi\":\"10.1002/cssc.202500675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydorgen peroxide (H<sub>2</sub>O<sub>2</sub>) is an eco-friendly and versatile chemical with extensive applications across various inductrial and househould scenario. Electrosynthesis of H<sub>2</sub>O<sub>2</sub> via the two-electron oxygen reduction reaction (2e<sup>-</sup> ORR) offers an efficient and sustainable alterantives to conventional anthraquinone process. Carbon-based catalysts have garnered significant attention in this field due to their intrinsic advantages, including cost-effectiveness, structural tunability, high electrical conductivity, and abundant surface active sites. However, achieving industrially viable H<sub>2</sub>O<sub>2</sub> productivity and selectivity demands a holistic optimization strategy encompassing catalyst design, electrode architectures, electrolyte modulation, and reactor configuration. This review systematically examines recent advances in carbon-based catalysts for electrochemical H<sub>2</sub>O<sub>2</sub> generation, addressing fundamental mechanisms of 2e<sup>-</sup> ORR pathways; controlled synthesis strategies; and system-level optimizations of electrodes, electrolytes and reactors. State-of-the-art in situ/operando characterization techniques and machine learning-driven computational models are highlighted as indispensable tools for unraveling reaction mechanisms and accelerating catalyst discovery. Finally, Challenges and future research directions for advancing carbon-based electrocatalysts toward practical applications are critically discussed.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e2500675\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202500675\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500675","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过氧化氢(H2O2)是一种环保和通用的化学品,广泛应用于各种工业和家庭场景。通过双电子氧还原反应(2e - ORR)电合成H2O2为传统的蒽醌工艺提供了一种高效、可持续的替代方法。碳基催化剂因其具有成本效益、结构可调节性、高导电性和丰富的表面活性位点等内在优势而受到广泛关注。然而,要实现工业上可行的H₂O₂生产率和选择性,需要包括催化剂设计、电极结构、电解质调制和反应器配置在内的整体优化策略。本文系统地回顾了碳基催化剂在电化学生成H2O2方面的最新进展,阐述了2e - ORR途径的基本机制、受控合成策略、电极、电解质和反应器的系统级优化。最先进的原位/操作表征技术和机器学习驱动的计算模型被强调为揭示反应机制和加速催化剂发现不可或缺的工具。最后,重点讨论了碳基电催化剂在实际应用中面临的挑战和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carbon-Based Catalysts for Electrosynthesis of Hydrogen Peroxide.

Hydorgen peroxide (H2O2) is an eco-friendly and versatile chemical with extensive applications across various inductrial and househould scenario. Electrosynthesis of H2O2 via the two-electron oxygen reduction reaction (2e- ORR) offers an efficient and sustainable alterantives to conventional anthraquinone process. Carbon-based catalysts have garnered significant attention in this field due to their intrinsic advantages, including cost-effectiveness, structural tunability, high electrical conductivity, and abundant surface active sites. However, achieving industrially viable H2O2 productivity and selectivity demands a holistic optimization strategy encompassing catalyst design, electrode architectures, electrolyte modulation, and reactor configuration. This review systematically examines recent advances in carbon-based catalysts for electrochemical H2O2 generation, addressing fundamental mechanisms of 2e- ORR pathways; controlled synthesis strategies; and system-level optimizations of electrodes, electrolytes and reactors. State-of-the-art in situ/operando characterization techniques and machine learning-driven computational models are highlighted as indispensable tools for unraveling reaction mechanisms and accelerating catalyst discovery. Finally, Challenges and future research directions for advancing carbon-based electrocatalysts toward practical applications are critically discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信