{"title":"人工智能在肾脏成像中的研究进展。","authors":"Ali Sheikhy, Fatemeh Dehghani Firouzabadi, Nathan Lay, Negin Jarrah, Pouria Yazdian Anari, Ashkan Malayeri","doi":"10.1007/s00261-025-04963-3","DOIUrl":null,"url":null,"abstract":"<p><p>Renal cell carcinoma (RCC) as a significant health concern, with incidence rates rising annually due to increased use of cross-sectional imaging, leading to a higher detection of incidental renal lesions. Differentiation between benign and malignant renal lesions is essential for effective treatment planning and prognosis. Renal tumors present numerous histological subtypes with different prognoses, making precise subtype differentiation crucial. Artificial intelligence (AI), especially machine learning (ML) and deep learning (DL), shows promise in radiological analysis, providing advanced tools for renal lesion detection, segmentation, and classification to improve diagnosis and personalize treatment. Recent advancements in AI have demonstrated effectiveness in identifying renal lesions and predicting surveillance outcomes, yet limitations remain, including data variability, interpretability, and publication bias. In this review we explored the current role of AI in assessing kidney lesions, highlighting its potential in preoperative diagnosis and addressing existing challenges for clinical implementation.</p>","PeriodicalId":7126,"journal":{"name":"Abdominal Radiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State of the art review of AI in renal imaging.\",\"authors\":\"Ali Sheikhy, Fatemeh Dehghani Firouzabadi, Nathan Lay, Negin Jarrah, Pouria Yazdian Anari, Ashkan Malayeri\",\"doi\":\"10.1007/s00261-025-04963-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Renal cell carcinoma (RCC) as a significant health concern, with incidence rates rising annually due to increased use of cross-sectional imaging, leading to a higher detection of incidental renal lesions. Differentiation between benign and malignant renal lesions is essential for effective treatment planning and prognosis. Renal tumors present numerous histological subtypes with different prognoses, making precise subtype differentiation crucial. Artificial intelligence (AI), especially machine learning (ML) and deep learning (DL), shows promise in radiological analysis, providing advanced tools for renal lesion detection, segmentation, and classification to improve diagnosis and personalize treatment. Recent advancements in AI have demonstrated effectiveness in identifying renal lesions and predicting surveillance outcomes, yet limitations remain, including data variability, interpretability, and publication bias. In this review we explored the current role of AI in assessing kidney lesions, highlighting its potential in preoperative diagnosis and addressing existing challenges for clinical implementation.</p>\",\"PeriodicalId\":7126,\"journal\":{\"name\":\"Abdominal Radiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abdominal Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00261-025-04963-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abdominal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00261-025-04963-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Renal cell carcinoma (RCC) as a significant health concern, with incidence rates rising annually due to increased use of cross-sectional imaging, leading to a higher detection of incidental renal lesions. Differentiation between benign and malignant renal lesions is essential for effective treatment planning and prognosis. Renal tumors present numerous histological subtypes with different prognoses, making precise subtype differentiation crucial. Artificial intelligence (AI), especially machine learning (ML) and deep learning (DL), shows promise in radiological analysis, providing advanced tools for renal lesion detection, segmentation, and classification to improve diagnosis and personalize treatment. Recent advancements in AI have demonstrated effectiveness in identifying renal lesions and predicting surveillance outcomes, yet limitations remain, including data variability, interpretability, and publication bias. In this review we explored the current role of AI in assessing kidney lesions, highlighting its potential in preoperative diagnosis and addressing existing challenges for clinical implementation.
期刊介绍:
Abdominal Radiology seeks to meet the professional needs of the abdominal radiologist by publishing clinically pertinent original, review and practice related articles on the gastrointestinal and genitourinary tracts and abdominal interventional and radiologic procedures. Case reports are generally not accepted unless they are the first report of a new disease or condition, or part of a special solicited section.
Reasons to Publish Your Article in Abdominal Radiology:
· Official journal of the Society of Abdominal Radiology (SAR)
· Published in Cooperation with:
European Society of Gastrointestinal and Abdominal Radiology (ESGAR)
European Society of Urogenital Radiology (ESUR)
Asian Society of Abdominal Radiology (ASAR)
· Efficient handling and Expeditious review
· Author feedback is provided in a mentoring style
· Global readership
· Readers can earn CME credits