针对AcrB亚基结构和突变方面的外排泵抑制剂与抗生素的共同开发。

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED
Shweta Singh Chauhan, Tanya Jamal, Anshika Gupta, Ramakrishnan Parthasarathi
{"title":"针对AcrB亚基结构和突变方面的外排泵抑制剂与抗生素的共同开发。","authors":"Shweta Singh Chauhan, Tanya Jamal, Anshika Gupta, Ramakrishnan Parthasarathi","doi":"10.1007/s11030-025-11204-8","DOIUrl":null,"url":null,"abstract":"<p><p>The rise of antimicrobial resistance (AMR) of the routinely used antibiotics is ineffective against drug-resistant pathogenic strains of Escherichia coli, set off with limited treatment choices, costs, and increasing mortality rates. Multidrug efflux pumps have been identified as crucial determinants of AMR, flushing numerous antibiotics from cells in a non-specific way, and have emerged as promising drug targets to overcome AMR. Herein, the work focuses on determining structural and mutational insights of tripartite efflux pump subunit AcrB by executing multiple sequence alignment (MSA); the residues 615 and 617 at the substrate-binding site were identified mutated from an aromatic amino acid, phenylalanine, to an aliphatic amino acid, alanine. The study proceeded with the co-development of AcrB antagonist's by applying pharmacokinetic parameters filters to 40,613 natural compounds and molecular docking of single compounds, multiple ligand simultaneous docking (MLSD), molecular dynamics (MD) simulations, principal component analysis (PCA), and free energy landscape (FEL) analysis by considering resistant antibiotics. The identified mutations in the AcrB subunit are responsible for upregulating the activity of the AcrAB-TolC efflux pump and leading to a reduced concentration of antibiotics in the bacterial cytoplasm, ultimately increasing antibiotic resistance. Furthermore, based upon compound screening against target AcrB, 3-Hydroxyfumiquinazoline A shows competitive interaction with the antibiotic Erythromycin. A similar interaction pattern was observed between Sungucine and Cheatoglobosin D with Novobiocin while Procheatoglobosin I and Chaetoglobosin Q with Fusidic acid. Our findings highlight a novel class of efflux pump inhibitors (EPIs) that effectively antagonize the AcrB subunit and could serve as novel adjuvant alternatives for reviving antibiotic activity in resistant bacteria.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-development of efflux pump inhibitors with antibiotics on targeting structural and mutational aspects of AcrB subunit.\",\"authors\":\"Shweta Singh Chauhan, Tanya Jamal, Anshika Gupta, Ramakrishnan Parthasarathi\",\"doi\":\"10.1007/s11030-025-11204-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rise of antimicrobial resistance (AMR) of the routinely used antibiotics is ineffective against drug-resistant pathogenic strains of Escherichia coli, set off with limited treatment choices, costs, and increasing mortality rates. Multidrug efflux pumps have been identified as crucial determinants of AMR, flushing numerous antibiotics from cells in a non-specific way, and have emerged as promising drug targets to overcome AMR. Herein, the work focuses on determining structural and mutational insights of tripartite efflux pump subunit AcrB by executing multiple sequence alignment (MSA); the residues 615 and 617 at the substrate-binding site were identified mutated from an aromatic amino acid, phenylalanine, to an aliphatic amino acid, alanine. The study proceeded with the co-development of AcrB antagonist's by applying pharmacokinetic parameters filters to 40,613 natural compounds and molecular docking of single compounds, multiple ligand simultaneous docking (MLSD), molecular dynamics (MD) simulations, principal component analysis (PCA), and free energy landscape (FEL) analysis by considering resistant antibiotics. The identified mutations in the AcrB subunit are responsible for upregulating the activity of the AcrAB-TolC efflux pump and leading to a reduced concentration of antibiotics in the bacterial cytoplasm, ultimately increasing antibiotic resistance. Furthermore, based upon compound screening against target AcrB, 3-Hydroxyfumiquinazoline A shows competitive interaction with the antibiotic Erythromycin. A similar interaction pattern was observed between Sungucine and Cheatoglobosin D with Novobiocin while Procheatoglobosin I and Chaetoglobosin Q with Fusidic acid. Our findings highlight a novel class of efflux pump inhibitors (EPIs) that effectively antagonize the AcrB subunit and could serve as novel adjuvant alternatives for reviving antibiotic activity in resistant bacteria.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11204-8\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11204-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

常规使用抗生素抗菌素耐药性(AMR)的上升对耐药致病性大肠杆菌菌株无效,导致治疗选择有限,成本有限,死亡率不断上升。多药物外排泵已被确定为抗菌素耐药性的关键决定因素,以非特异性方式从细胞中冲洗大量抗生素,并已成为克服抗菌素耐药性的有希望的药物靶点。本文的工作重点是通过执行多序列比对(MSA)来确定三方外排泵亚基AcrB的结构和突变见解;底物结合位点的残基615和617从芳香氨基酸苯丙氨酸突变为脂肪氨基酸丙氨酸。本研究通过对40,613种天然化合物进行药代动力学参数筛选、单化合物分子对接、多配体同时对接(MLSD)、分子动力学(MD)模拟、主成分分析(PCA)和考虑耐药抗生素的自由能景观(FEL)分析,共同开发AcrB拮抗剂。已鉴定的AcrB亚基突变负责上调AcrB - tolc外排泵的活性,并导致细菌细胞质中抗生素浓度降低,最终增加抗生素耐药性。此外,基于靶向AcrB的化合物筛选,3-羟基富米喹唑啉A与抗生素红霉素表现出竞争性相互作用。Sungucine和cheatglobosin D与Novobiocin以及procheatglobosin I和Chaetoglobosin Q与fususidic acid之间也存在类似的相互作用模式。我们的研究结果强调了一类新的外排泵抑制剂(EPIs),它们可以有效地拮抗AcrB亚基,并可以作为一种新的佐剂替代品,在耐药细菌中恢复抗生素活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Co-development of efflux pump inhibitors with antibiotics on targeting structural and mutational aspects of AcrB subunit.

The rise of antimicrobial resistance (AMR) of the routinely used antibiotics is ineffective against drug-resistant pathogenic strains of Escherichia coli, set off with limited treatment choices, costs, and increasing mortality rates. Multidrug efflux pumps have been identified as crucial determinants of AMR, flushing numerous antibiotics from cells in a non-specific way, and have emerged as promising drug targets to overcome AMR. Herein, the work focuses on determining structural and mutational insights of tripartite efflux pump subunit AcrB by executing multiple sequence alignment (MSA); the residues 615 and 617 at the substrate-binding site were identified mutated from an aromatic amino acid, phenylalanine, to an aliphatic amino acid, alanine. The study proceeded with the co-development of AcrB antagonist's by applying pharmacokinetic parameters filters to 40,613 natural compounds and molecular docking of single compounds, multiple ligand simultaneous docking (MLSD), molecular dynamics (MD) simulations, principal component analysis (PCA), and free energy landscape (FEL) analysis by considering resistant antibiotics. The identified mutations in the AcrB subunit are responsible for upregulating the activity of the AcrAB-TolC efflux pump and leading to a reduced concentration of antibiotics in the bacterial cytoplasm, ultimately increasing antibiotic resistance. Furthermore, based upon compound screening against target AcrB, 3-Hydroxyfumiquinazoline A shows competitive interaction with the antibiotic Erythromycin. A similar interaction pattern was observed between Sungucine and Cheatoglobosin D with Novobiocin while Procheatoglobosin I and Chaetoglobosin Q with Fusidic acid. Our findings highlight a novel class of efflux pump inhibitors (EPIs) that effectively antagonize the AcrB subunit and could serve as novel adjuvant alternatives for reviving antibiotic activity in resistant bacteria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信