{"title":"单态多方量子密钥协议与单粒子测量。","authors":"Hao Yang, Dunbo Cai, Ling Qian, Runqing Zhang, Songfeng Lu, Chengfu Sun","doi":"10.3390/e27040405","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we propose a single-state multi-party quantum key agreement (MQKA) protocol with single-particle measurement. Firstly, a single-state three-party quantum key agreement protocol with single-particle measurement is introduced, followed by a security analysis that validated its capability to resist potential internal and external attacks. Furthermore, we utilize multi-particle entangled states to present a multi-party version of the single-state multi-party quantum key agreement with single-particle measurement. In comparison to previous MQKA protocols, our approach presents the following advantages: it employs one kind of multi-particle entangled state as the quantum resource; eliminates the need for entanglement swapping techniques, unitary operations, or pre-shared keys between participants; uses only the X measurement basis and Z measurement basis; transmits fewer qubits; consumes fewer qubits; and has higher qubit efficiency.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026176/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-State Multi-Party Quantum Key Agreement with Single-Particle Measurement.\",\"authors\":\"Hao Yang, Dunbo Cai, Ling Qian, Runqing Zhang, Songfeng Lu, Chengfu Sun\",\"doi\":\"10.3390/e27040405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we propose a single-state multi-party quantum key agreement (MQKA) protocol with single-particle measurement. Firstly, a single-state three-party quantum key agreement protocol with single-particle measurement is introduced, followed by a security analysis that validated its capability to resist potential internal and external attacks. Furthermore, we utilize multi-particle entangled states to present a multi-party version of the single-state multi-party quantum key agreement with single-particle measurement. In comparison to previous MQKA protocols, our approach presents the following advantages: it employs one kind of multi-particle entangled state as the quantum resource; eliminates the need for entanglement swapping techniques, unitary operations, or pre-shared keys between participants; uses only the X measurement basis and Z measurement basis; transmits fewer qubits; consumes fewer qubits; and has higher qubit efficiency.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026176/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040405\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040405","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Single-State Multi-Party Quantum Key Agreement with Single-Particle Measurement.
In this study, we propose a single-state multi-party quantum key agreement (MQKA) protocol with single-particle measurement. Firstly, a single-state three-party quantum key agreement protocol with single-particle measurement is introduced, followed by a security analysis that validated its capability to resist potential internal and external attacks. Furthermore, we utilize multi-particle entangled states to present a multi-party version of the single-state multi-party quantum key agreement with single-particle measurement. In comparison to previous MQKA protocols, our approach presents the following advantages: it employs one kind of multi-particle entangled state as the quantum resource; eliminates the need for entanglement swapping techniques, unitary operations, or pre-shared keys between participants; uses only the X measurement basis and Z measurement basis; transmits fewer qubits; consumes fewer qubits; and has higher qubit efficiency.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.