抵抗CAR-T细胞疗法的机制和增强策略。

IF 9.3 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Anran Wu, Tingying Zhang, Hongkai Yu, Yuyue Cao, Rui Zhang, Ruonan Shao, Bofeng Liu, Liting Chen, Kailin Xu, Wei Chen, Jinyuan Ho, Xiaofeng Shi
{"title":"抵抗CAR-T细胞疗法的机制和增强策略。","authors":"Anran Wu, Tingying Zhang, Hongkai Yu, Yuyue Cao, Rui Zhang, Ruonan Shao, Bofeng Liu, Liting Chen, Kailin Xu, Wei Chen, Jinyuan Ho, Xiaofeng Shi","doi":"10.1016/j.cytogfr.2025.04.002","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T-cell therapy has emerged as a revolutionary approach in the treatment of hematological malignancies, including acute lymphoblastic leukemia, B-cell lymphoma, and multiple myeloma. Despite its promise, the clinical efficacy is often hampered by transient efficacy and subsequent relapse, which curtail the long-term success of this treatment. Current research focuses on overcoming these obstacles by exploring multitarget strategies and optimizing CAR-T cell design. This review summarizes recent insights into the resistance mechanisms associated with CAR-T cell therapy, and delineates emerging strategies for optimized CAR construction, including targeting multiple antigens, improving CAR design, and enhancing T-cell persistence. The goal is to provide a comprehensive overview of the field's current landscape to guide future research and the clinical application of CAR-T cell therapies.</p>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms underlying resistance to CAR-T cell therapy and strategies for enhancement.\",\"authors\":\"Anran Wu, Tingying Zhang, Hongkai Yu, Yuyue Cao, Rui Zhang, Ruonan Shao, Bofeng Liu, Liting Chen, Kailin Xu, Wei Chen, Jinyuan Ho, Xiaofeng Shi\",\"doi\":\"10.1016/j.cytogfr.2025.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chimeric antigen receptor (CAR) T-cell therapy has emerged as a revolutionary approach in the treatment of hematological malignancies, including acute lymphoblastic leukemia, B-cell lymphoma, and multiple myeloma. Despite its promise, the clinical efficacy is often hampered by transient efficacy and subsequent relapse, which curtail the long-term success of this treatment. Current research focuses on overcoming these obstacles by exploring multitarget strategies and optimizing CAR-T cell design. This review summarizes recent insights into the resistance mechanisms associated with CAR-T cell therapy, and delineates emerging strategies for optimized CAR construction, including targeting multiple antigens, improving CAR design, and enhancing T-cell persistence. The goal is to provide a comprehensive overview of the field's current landscape to guide future research and the clinical application of CAR-T cell therapies.</p>\",\"PeriodicalId\":11132,\"journal\":{\"name\":\"Cytokine & Growth Factor Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytokine & Growth Factor Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cytogfr.2025.04.002\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytokine & Growth Factor Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.cytogfr.2025.04.002","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

嵌合抗原受体(CAR) t细胞疗法已成为治疗血液系统恶性肿瘤的一种革命性方法,包括急性淋巴细胞白血病、b细胞淋巴瘤和多发性骨髓瘤。尽管有希望,但临床疗效往往受到短暂疗效和随后的复发的阻碍,这限制了这种治疗的长期成功。目前的研究重点是通过探索多靶点策略和优化CAR-T细胞设计来克服这些障碍。这篇综述总结了与CAR- t细胞治疗相关的耐药机制的最新见解,并描述了优化CAR构建的新策略,包括靶向多种抗原、改进CAR设计和增强t细胞持久性。我们的目标是全面概述该领域的现状,以指导未来的研究和CAR-T细胞疗法的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanisms underlying resistance to CAR-T cell therapy and strategies for enhancement.

Chimeric antigen receptor (CAR) T-cell therapy has emerged as a revolutionary approach in the treatment of hematological malignancies, including acute lymphoblastic leukemia, B-cell lymphoma, and multiple myeloma. Despite its promise, the clinical efficacy is often hampered by transient efficacy and subsequent relapse, which curtail the long-term success of this treatment. Current research focuses on overcoming these obstacles by exploring multitarget strategies and optimizing CAR-T cell design. This review summarizes recent insights into the resistance mechanisms associated with CAR-T cell therapy, and delineates emerging strategies for optimized CAR construction, including targeting multiple antigens, improving CAR design, and enhancing T-cell persistence. The goal is to provide a comprehensive overview of the field's current landscape to guide future research and the clinical application of CAR-T cell therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytokine & Growth Factor Reviews
Cytokine & Growth Factor Reviews 生物-生化与分子生物学
CiteScore
21.10
自引率
1.50%
发文量
61
审稿时长
22 days
期刊介绍: Cytokine & Growth Factor Reviews is a leading publication that focuses on the dynamic fields of growth factor and cytokine research. Our journal offers a platform for authors to disseminate thought-provoking articles such as critical reviews, state-of-the-art reviews, letters to the editor, and meeting reviews. We aim to cover important breakthroughs in these rapidly evolving areas, providing valuable insights into the multidisciplinary significance of cytokines and growth factors. Our journal spans various domains including signal transduction, cell growth and differentiation, embryonic development, immunology, tumorigenesis, and clinical medicine. By publishing cutting-edge research and analysis, we aim to influence the way researchers and experts perceive and understand growth factors and cytokines. We encourage novel expressions of ideas and innovative approaches to organizing content, fostering a stimulating environment for knowledge exchange and scientific advancement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信