{"title":"抵抗CAR-T细胞疗法的机制和增强策略。","authors":"Anran Wu, Tingying Zhang, Hongkai Yu, Yuyue Cao, Rui Zhang, Ruonan Shao, Bofeng Liu, Liting Chen, Kailin Xu, Wei Chen, Jinyuan Ho, Xiaofeng Shi","doi":"10.1016/j.cytogfr.2025.04.002","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T-cell therapy has emerged as a revolutionary approach in the treatment of hematological malignancies, including acute lymphoblastic leukemia, B-cell lymphoma, and multiple myeloma. Despite its promise, the clinical efficacy is often hampered by transient efficacy and subsequent relapse, which curtail the long-term success of this treatment. Current research focuses on overcoming these obstacles by exploring multitarget strategies and optimizing CAR-T cell design. This review summarizes recent insights into the resistance mechanisms associated with CAR-T cell therapy, and delineates emerging strategies for optimized CAR construction, including targeting multiple antigens, improving CAR design, and enhancing T-cell persistence. The goal is to provide a comprehensive overview of the field's current landscape to guide future research and the clinical application of CAR-T cell therapies.</p>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms underlying resistance to CAR-T cell therapy and strategies for enhancement.\",\"authors\":\"Anran Wu, Tingying Zhang, Hongkai Yu, Yuyue Cao, Rui Zhang, Ruonan Shao, Bofeng Liu, Liting Chen, Kailin Xu, Wei Chen, Jinyuan Ho, Xiaofeng Shi\",\"doi\":\"10.1016/j.cytogfr.2025.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chimeric antigen receptor (CAR) T-cell therapy has emerged as a revolutionary approach in the treatment of hematological malignancies, including acute lymphoblastic leukemia, B-cell lymphoma, and multiple myeloma. Despite its promise, the clinical efficacy is often hampered by transient efficacy and subsequent relapse, which curtail the long-term success of this treatment. Current research focuses on overcoming these obstacles by exploring multitarget strategies and optimizing CAR-T cell design. This review summarizes recent insights into the resistance mechanisms associated with CAR-T cell therapy, and delineates emerging strategies for optimized CAR construction, including targeting multiple antigens, improving CAR design, and enhancing T-cell persistence. The goal is to provide a comprehensive overview of the field's current landscape to guide future research and the clinical application of CAR-T cell therapies.</p>\",\"PeriodicalId\":11132,\"journal\":{\"name\":\"Cytokine & Growth Factor Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytokine & Growth Factor Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cytogfr.2025.04.002\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytokine & Growth Factor Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.cytogfr.2025.04.002","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mechanisms underlying resistance to CAR-T cell therapy and strategies for enhancement.
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a revolutionary approach in the treatment of hematological malignancies, including acute lymphoblastic leukemia, B-cell lymphoma, and multiple myeloma. Despite its promise, the clinical efficacy is often hampered by transient efficacy and subsequent relapse, which curtail the long-term success of this treatment. Current research focuses on overcoming these obstacles by exploring multitarget strategies and optimizing CAR-T cell design. This review summarizes recent insights into the resistance mechanisms associated with CAR-T cell therapy, and delineates emerging strategies for optimized CAR construction, including targeting multiple antigens, improving CAR design, and enhancing T-cell persistence. The goal is to provide a comprehensive overview of the field's current landscape to guide future research and the clinical application of CAR-T cell therapies.
期刊介绍:
Cytokine & Growth Factor Reviews is a leading publication that focuses on the dynamic fields of growth factor and cytokine research. Our journal offers a platform for authors to disseminate thought-provoking articles such as critical reviews, state-of-the-art reviews, letters to the editor, and meeting reviews.
We aim to cover important breakthroughs in these rapidly evolving areas, providing valuable insights into the multidisciplinary significance of cytokines and growth factors. Our journal spans various domains including signal transduction, cell growth and differentiation, embryonic development, immunology, tumorigenesis, and clinical medicine.
By publishing cutting-edge research and analysis, we aim to influence the way researchers and experts perceive and understand growth factors and cytokines. We encourage novel expressions of ideas and innovative approaches to organizing content, fostering a stimulating environment for knowledge exchange and scientific advancement.