{"title":"饥饿诱导果蝇血脑屏障胶质细胞中单羧酸转运的上调。","authors":"Andrés González-Gutiérrez, Jorge Gaete, Andrés Esparza, Andrés Ibacache, Esteban G. Contreras, Jimena Sierralta","doi":"10.1002/glia.70021","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Living organisms can sense and adapt to constant changes in food availability. Maintaining a homeostatic supply of energy molecules is crucial for animal survival and normal organ functioning, particularly the brain, due to its high-energy demands. However, the mechanisms underlying brain adaptive responses to food availability have not been completely established. The nervous system is separated from the rest of the body by a physical barrier called the blood–brain barrier (BBB). In addition to its structural role, the BBB regulates the transport of metabolites and nutrients into the nervous system. This regulation is achieved through adaptive mechanisms that control the transport of nutrients, including glucose and monocarboxylates such as lactate, pyruvate, and ketone bodies. In \n <i>Drosophila melanogaster</i>\n , carbohydrate transporters increase their expression in glial cells of the BBB in response to starvation. However, changes in the expression or activity of <i>Drosophila</i> monocarboxylate transporters (dMCTs) at the BBB have not yet been reported. Here, we show that neuronal ATP levels remain unaffected despite reduced energy-related metabolites in the hemolymph of <i>Drosophila</i> larvae during starvation. Simultaneously, the transport of lactate and beta-hydroxybutyrate increases in the glial cells of the BBB. Using genetically encoded sensors, we identified Yarqay as a proton-coupled monocarboxylate transporter whose expression is upregulated in the subperineurial glia of the BBB during starvation. Our findings reveal a novel component of the adaptive response of the brain to starvation: the increase in the transport of monocarboxylates across the BBB, mediated by Yarqay, a novel dMCT enriched in the BBB.</p>\n </div>","PeriodicalId":174,"journal":{"name":"Glia","volume":"73 8","pages":"1608-1626"},"PeriodicalIF":5.1000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Starvation Induces Upregulation of Monocarboxylate Transport in Glial Cells at the Drosophila Blood–Brain Barrier\",\"authors\":\"Andrés González-Gutiérrez, Jorge Gaete, Andrés Esparza, Andrés Ibacache, Esteban G. Contreras, Jimena Sierralta\",\"doi\":\"10.1002/glia.70021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Living organisms can sense and adapt to constant changes in food availability. Maintaining a homeostatic supply of energy molecules is crucial for animal survival and normal organ functioning, particularly the brain, due to its high-energy demands. However, the mechanisms underlying brain adaptive responses to food availability have not been completely established. The nervous system is separated from the rest of the body by a physical barrier called the blood–brain barrier (BBB). In addition to its structural role, the BBB regulates the transport of metabolites and nutrients into the nervous system. This regulation is achieved through adaptive mechanisms that control the transport of nutrients, including glucose and monocarboxylates such as lactate, pyruvate, and ketone bodies. In \\n <i>Drosophila melanogaster</i>\\n , carbohydrate transporters increase their expression in glial cells of the BBB in response to starvation. However, changes in the expression or activity of <i>Drosophila</i> monocarboxylate transporters (dMCTs) at the BBB have not yet been reported. Here, we show that neuronal ATP levels remain unaffected despite reduced energy-related metabolites in the hemolymph of <i>Drosophila</i> larvae during starvation. Simultaneously, the transport of lactate and beta-hydroxybutyrate increases in the glial cells of the BBB. Using genetically encoded sensors, we identified Yarqay as a proton-coupled monocarboxylate transporter whose expression is upregulated in the subperineurial glia of the BBB during starvation. Our findings reveal a novel component of the adaptive response of the brain to starvation: the increase in the transport of monocarboxylates across the BBB, mediated by Yarqay, a novel dMCT enriched in the BBB.</p>\\n </div>\",\"PeriodicalId\":174,\"journal\":{\"name\":\"Glia\",\"volume\":\"73 8\",\"pages\":\"1608-1626\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/glia.70021\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glia","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/glia.70021","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Starvation Induces Upregulation of Monocarboxylate Transport in Glial Cells at the Drosophila Blood–Brain Barrier
Living organisms can sense and adapt to constant changes in food availability. Maintaining a homeostatic supply of energy molecules is crucial for animal survival and normal organ functioning, particularly the brain, due to its high-energy demands. However, the mechanisms underlying brain adaptive responses to food availability have not been completely established. The nervous system is separated from the rest of the body by a physical barrier called the blood–brain barrier (BBB). In addition to its structural role, the BBB regulates the transport of metabolites and nutrients into the nervous system. This regulation is achieved through adaptive mechanisms that control the transport of nutrients, including glucose and monocarboxylates such as lactate, pyruvate, and ketone bodies. In
Drosophila melanogaster
, carbohydrate transporters increase their expression in glial cells of the BBB in response to starvation. However, changes in the expression or activity of Drosophila monocarboxylate transporters (dMCTs) at the BBB have not yet been reported. Here, we show that neuronal ATP levels remain unaffected despite reduced energy-related metabolites in the hemolymph of Drosophila larvae during starvation. Simultaneously, the transport of lactate and beta-hydroxybutyrate increases in the glial cells of the BBB. Using genetically encoded sensors, we identified Yarqay as a proton-coupled monocarboxylate transporter whose expression is upregulated in the subperineurial glia of the BBB during starvation. Our findings reveal a novel component of the adaptive response of the brain to starvation: the increase in the transport of monocarboxylates across the BBB, mediated by Yarqay, a novel dMCT enriched in the BBB.
期刊介绍:
GLIA is a peer-reviewed journal, which publishes articles dealing with all aspects of glial structure and function. This includes all aspects of glial cell biology in health and disease.