具有双活性位点的CoWO4纳米颗粒用于高效氨合成。

IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Lian Duan, Zhencong Huang, Gen Chen, Min Liu, Xiaohe Liu, Renzhi Ma and Ning Zhang
{"title":"具有双活性位点的CoWO4纳米颗粒用于高效氨合成。","authors":"Lian Duan, Zhencong Huang, Gen Chen, Min Liu, Xiaohe Liu, Renzhi Ma and Ning Zhang","doi":"10.1039/D5NH00120J","DOIUrl":null,"url":null,"abstract":"<p >The electrochemical reduction reaction of NO<small><sub>3</sub></small><small><sup>−</sup></small> (NO<small><sub>3</sub></small>RR) represents a promising green technology for ammonia (NH<small><sub>3</sub></small>) synthesis. Among various electrocatalysts, Co-based materials have demonstrated considerable potential for the NO<small><sub>3</sub></small>RR. However, the NH<small><sub>3</sub></small> production efficiency of Co-based materials is still limited due to challenges in the competitive hydrogen evolution reaction (HER) and hydrogenating oxynitride intermediates (*NO<small><sub><em>x</em></sub></small>). In this study, tungsten (W) and cobalt (Co) elements are co-incorporated to form cobalt tungstate (CoWO<small><sub>4</sub></small>) nanoparticles with dual active sites of Co<small><sup>2+</sup></small> and W<small><sup>6+</sup></small>, which are applied to optimize the hydrogenation of NO<small><sub><em>x</em></sub></small> and decrease the HER, thereby achieving a highly efficient NO<small><sub>3</sub></small>RR to NH<small><sub>3</sub></small>. Theoretical calculations indicate that the Co sites in CoWO<small><sub>4</sub></small> facilitate the adsorption and hydrogenation of *NO<small><sub><em>x</em></sub></small> intermediates, while W sites suppress the competitive HER. These dual active sites work synergistically to enhance NH<small><sub>3</sub></small> production from the NO<small><sub>3</sub></small>RR. Inspired by these calculations, CoWO<small><sub>4</sub></small> nanoparticles are synthesized using a simple ion precipitation method, with sizes ranging from 10 to 30 nm. Electrochemical performance tests demonstrate that CoWO<small><sub>4</sub></small> nanoparticles exhibit a high faradaic efficiency of 97.8 ± 1.5% and an NH<small><sub>3</sub></small> yield of 13.2 mg h<small><sup>−1</sup></small> cm<small><sup>−2</sup></small>. <em>In situ</em> Fourier transform infrared spectroscopy characterizes the enhanced adsorption and hydrogenation behaviors of *NO<small><sub><em>x</em></sub></small> as well as a minimized HER on CoWO<small><sub>4</sub></small>, which contributes to the high efficiency and selectivity to NH<small><sub>3</sub></small>. This work introduces CoWO<small><sub>4</sub></small> nanoparticles as an electrocatalytic material with dual active sites, contributing to the design of electrocatalysts for NH<small><sub>3</sub></small> synthesis.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 6","pages":" 1096-1106"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CoWO4 nanoparticles with dual active sites for highly efficient ammonia synthesis†\",\"authors\":\"Lian Duan, Zhencong Huang, Gen Chen, Min Liu, Xiaohe Liu, Renzhi Ma and Ning Zhang\",\"doi\":\"10.1039/D5NH00120J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The electrochemical reduction reaction of NO<small><sub>3</sub></small><small><sup>−</sup></small> (NO<small><sub>3</sub></small>RR) represents a promising green technology for ammonia (NH<small><sub>3</sub></small>) synthesis. Among various electrocatalysts, Co-based materials have demonstrated considerable potential for the NO<small><sub>3</sub></small>RR. However, the NH<small><sub>3</sub></small> production efficiency of Co-based materials is still limited due to challenges in the competitive hydrogen evolution reaction (HER) and hydrogenating oxynitride intermediates (*NO<small><sub><em>x</em></sub></small>). In this study, tungsten (W) and cobalt (Co) elements are co-incorporated to form cobalt tungstate (CoWO<small><sub>4</sub></small>) nanoparticles with dual active sites of Co<small><sup>2+</sup></small> and W<small><sup>6+</sup></small>, which are applied to optimize the hydrogenation of NO<small><sub><em>x</em></sub></small> and decrease the HER, thereby achieving a highly efficient NO<small><sub>3</sub></small>RR to NH<small><sub>3</sub></small>. Theoretical calculations indicate that the Co sites in CoWO<small><sub>4</sub></small> facilitate the adsorption and hydrogenation of *NO<small><sub><em>x</em></sub></small> intermediates, while W sites suppress the competitive HER. These dual active sites work synergistically to enhance NH<small><sub>3</sub></small> production from the NO<small><sub>3</sub></small>RR. Inspired by these calculations, CoWO<small><sub>4</sub></small> nanoparticles are synthesized using a simple ion precipitation method, with sizes ranging from 10 to 30 nm. Electrochemical performance tests demonstrate that CoWO<small><sub>4</sub></small> nanoparticles exhibit a high faradaic efficiency of 97.8 ± 1.5% and an NH<small><sub>3</sub></small> yield of 13.2 mg h<small><sup>−1</sup></small> cm<small><sup>−2</sup></small>. <em>In situ</em> Fourier transform infrared spectroscopy characterizes the enhanced adsorption and hydrogenation behaviors of *NO<small><sub><em>x</em></sub></small> as well as a minimized HER on CoWO<small><sub>4</sub></small>, which contributes to the high efficiency and selectivity to NH<small><sub>3</sub></small>. This work introduces CoWO<small><sub>4</sub></small> nanoparticles as an electrocatalytic material with dual active sites, contributing to the design of electrocatalysts for NH<small><sub>3</sub></small> synthesis.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" 6\",\"pages\":\" 1096-1106\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nh/d5nh00120j\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nh/d5nh00120j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

NO3- (NO3RR)的电化学还原反应是一种很有前途的绿色合成氨技术。在各种电催化剂中,钴基材料已显示出相当大的潜力。然而,由于竞争析氢反应(HER)和氢化氮氧化物中间体(*NOx)的挑战,co基材料的NH3生产效率仍然有限。本研究将钨(W)和钴(Co)元素共掺入形成具有Co2+和W6+双活性位点的钨酸钴(CoWO4)纳米颗粒,用于优化NOx加氢,降低HER,从而实现NO3RR对NH3的高效还原。理论计算表明,CoWO4中的Co位有利于*NOx中间体的吸附和加氢,而W位抑制竞争性HER。这些双活性位点协同作用,促进NO3RR产生NH3。受这些计算的启发,采用简单的离子沉淀法合成了CoWO4纳米颗粒,其尺寸范围从10到30纳米。电化学性能测试表明,CoWO4纳米粒子的法拉第效率为97.8±1.5%,NH3产率为13.2 mg h-1 cm-2。原位傅里叶变换红外光谱表征了*NOx的增强吸附和加氢行为,以及最小化的对CoWO4的HER,这有助于提高对NH3的效率和选择性。本文介绍了CoWO4纳米颗粒作为具有双活性位点的电催化材料,为NH3合成电催化剂的设计做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CoWO4 nanoparticles with dual active sites for highly efficient ammonia synthesis†

The electrochemical reduction reaction of NO3 (NO3RR) represents a promising green technology for ammonia (NH3) synthesis. Among various electrocatalysts, Co-based materials have demonstrated considerable potential for the NO3RR. However, the NH3 production efficiency of Co-based materials is still limited due to challenges in the competitive hydrogen evolution reaction (HER) and hydrogenating oxynitride intermediates (*NOx). In this study, tungsten (W) and cobalt (Co) elements are co-incorporated to form cobalt tungstate (CoWO4) nanoparticles with dual active sites of Co2+ and W6+, which are applied to optimize the hydrogenation of NOx and decrease the HER, thereby achieving a highly efficient NO3RR to NH3. Theoretical calculations indicate that the Co sites in CoWO4 facilitate the adsorption and hydrogenation of *NOx intermediates, while W sites suppress the competitive HER. These dual active sites work synergistically to enhance NH3 production from the NO3RR. Inspired by these calculations, CoWO4 nanoparticles are synthesized using a simple ion precipitation method, with sizes ranging from 10 to 30 nm. Electrochemical performance tests demonstrate that CoWO4 nanoparticles exhibit a high faradaic efficiency of 97.8 ± 1.5% and an NH3 yield of 13.2 mg h−1 cm−2. In situ Fourier transform infrared spectroscopy characterizes the enhanced adsorption and hydrogenation behaviors of *NOx as well as a minimized HER on CoWO4, which contributes to the high efficiency and selectivity to NH3. This work introduces CoWO4 nanoparticles as an electrocatalytic material with dual active sites, contributing to the design of electrocatalysts for NH3 synthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信