转录组学、蛋白质组学和放射组学数据的多模式整合策略,用于预测idh突变胶质瘤患者的复发。

IF 5.7 2区 医学 Q1 ONCOLOGY
Tiffanie Chouleur, Christèle Etchegaray, Laura Villain, Antoine Lesur, Thomas Ferté, Marco Rossi, Laetitia Andrique, Costanza Simoncini, Anne-Sophie Giacobbi, Matteo Gambaretti, Egesta Lopci, Bethania Fernades, Gunnar Dittmar, Rolf Bjerkvig, Boris Hejblum, Rodolphe Thiébaut, Olivier Saut, Lorenzo Bello, Andreas Bikfalvi
{"title":"转录组学、蛋白质组学和放射组学数据的多模式整合策略,用于预测idh突变胶质瘤患者的复发。","authors":"Tiffanie Chouleur, Christèle Etchegaray, Laura Villain, Antoine Lesur, Thomas Ferté, Marco Rossi, Laetitia Andrique, Costanza Simoncini, Anne-Sophie Giacobbi, Matteo Gambaretti, Egesta Lopci, Bethania Fernades, Gunnar Dittmar, Rolf Bjerkvig, Boris Hejblum, Rodolphe Thiébaut, Olivier Saut, Lorenzo Bello, Andreas Bikfalvi","doi":"10.1002/ijc.35441","DOIUrl":null,"url":null,"abstract":"<p><p>Isocitrate dehydrogenase-mutant gliomas are lethal brain cancers that impair quality of life in young adults. Although less aggressive than glioblastomas, IDH-mutant gliomas invariably progress to incurable disease with unpredictable recurrence. A better classification of patient risk of recurrence is needed. Here, we describe a multimodal analytical pipeline integrating imaging, transcriptomic, and proteomic profiles using machine learning to improve patient stratification with novel signatures of patient risk of recurrence based on gene expression, protein level, and imaging. Additionally, we describe the biological characteristics of IDH-mutant glioma subtypes categorized by positron emission tomography (PET) and histology, and we reinforce the integration of positron emission tomography (PET) metrics in the classification of IDH-mutant gliomas. We identify a gene signature (KRT19, RUNX3, and SCRT2) and a protein signature (ATXN10, EIF4H, ITGAV, and NCAM1) associated with an increased risk of early recurrence. Furthermore, we integrated these markers with imaging-derived features, obtaining a better stratification of IDH-mutant glioma patients in comparison to histomolecular classification alone.</p>","PeriodicalId":180,"journal":{"name":"International Journal of Cancer","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A strategy for multimodal integration of transcriptomics, proteomics, and radiomics data for the prediction of recurrence in patients with IDH-mutant gliomas.\",\"authors\":\"Tiffanie Chouleur, Christèle Etchegaray, Laura Villain, Antoine Lesur, Thomas Ferté, Marco Rossi, Laetitia Andrique, Costanza Simoncini, Anne-Sophie Giacobbi, Matteo Gambaretti, Egesta Lopci, Bethania Fernades, Gunnar Dittmar, Rolf Bjerkvig, Boris Hejblum, Rodolphe Thiébaut, Olivier Saut, Lorenzo Bello, Andreas Bikfalvi\",\"doi\":\"10.1002/ijc.35441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Isocitrate dehydrogenase-mutant gliomas are lethal brain cancers that impair quality of life in young adults. Although less aggressive than glioblastomas, IDH-mutant gliomas invariably progress to incurable disease with unpredictable recurrence. A better classification of patient risk of recurrence is needed. Here, we describe a multimodal analytical pipeline integrating imaging, transcriptomic, and proteomic profiles using machine learning to improve patient stratification with novel signatures of patient risk of recurrence based on gene expression, protein level, and imaging. Additionally, we describe the biological characteristics of IDH-mutant glioma subtypes categorized by positron emission tomography (PET) and histology, and we reinforce the integration of positron emission tomography (PET) metrics in the classification of IDH-mutant gliomas. We identify a gene signature (KRT19, RUNX3, and SCRT2) and a protein signature (ATXN10, EIF4H, ITGAV, and NCAM1) associated with an increased risk of early recurrence. Furthermore, we integrated these markers with imaging-derived features, obtaining a better stratification of IDH-mutant glioma patients in comparison to histomolecular classification alone.</p>\",\"PeriodicalId\":180,\"journal\":{\"name\":\"International Journal of Cancer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ijc.35441\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ijc.35441","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

异柠檬酸脱氢酶突变胶质瘤是一种致命的脑癌,损害年轻人的生活质量。虽然侵袭性不如胶质母细胞瘤,但idh突变型胶质瘤总是发展为无法治愈的疾病,并伴有不可预测的复发。需要对患者复发风险进行更好的分类。在这里,我们描述了一个多模式的分析管道,整合成像,转录组学和蛋白质组学,使用机器学习来改善患者分层,基于基因表达,蛋白质水平和成像的患者复发风险的新特征。此外,我们描述了通过正电子发射断层扫描(PET)和组织学分类的idh突变胶质瘤亚型的生物学特征,并加强了正电子发射断层扫描(PET)指标在idh突变胶质瘤分类中的整合。我们确定了与早期复发风险增加相关的基因特征(KRT19、RUNX3和SCRT2)和蛋白质特征(ATXN10、EIF4H、ITGAV和NCAM1)。此外,我们将这些标记与影像学特征结合起来,与单独的组织分子分类相比,获得了更好的idh突变胶质瘤患者分层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A strategy for multimodal integration of transcriptomics, proteomics, and radiomics data for the prediction of recurrence in patients with IDH-mutant gliomas.

Isocitrate dehydrogenase-mutant gliomas are lethal brain cancers that impair quality of life in young adults. Although less aggressive than glioblastomas, IDH-mutant gliomas invariably progress to incurable disease with unpredictable recurrence. A better classification of patient risk of recurrence is needed. Here, we describe a multimodal analytical pipeline integrating imaging, transcriptomic, and proteomic profiles using machine learning to improve patient stratification with novel signatures of patient risk of recurrence based on gene expression, protein level, and imaging. Additionally, we describe the biological characteristics of IDH-mutant glioma subtypes categorized by positron emission tomography (PET) and histology, and we reinforce the integration of positron emission tomography (PET) metrics in the classification of IDH-mutant gliomas. We identify a gene signature (KRT19, RUNX3, and SCRT2) and a protein signature (ATXN10, EIF4H, ITGAV, and NCAM1) associated with an increased risk of early recurrence. Furthermore, we integrated these markers with imaging-derived features, obtaining a better stratification of IDH-mutant glioma patients in comparison to histomolecular classification alone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.40
自引率
3.10%
发文量
460
审稿时长
2 months
期刊介绍: The International Journal of Cancer (IJC) is the official journal of the Union for International Cancer Control—UICC; it appears twice a month. IJC invites submission of manuscripts under a broad scope of topics relevant to experimental and clinical cancer research and publishes original Research Articles and Short Reports under the following categories: -Cancer Epidemiology- Cancer Genetics and Epigenetics- Infectious Causes of Cancer- Innovative Tools and Methods- Molecular Cancer Biology- Tumor Immunology and Microenvironment- Tumor Markers and Signatures- Cancer Therapy and Prevention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信