Amrita Arup Roy, Abhijeet Pandey, Namdev Dhas, Manasa Manjunath Hegde, Harendra S Parekh, Sai Balaji Andugulapati, Krishnadas Nandakumar, Bola Sadashiva Satish Rao, Srinivas Mutalik
{"title":"纳米技术和热休克蛋白70在胶质母细胞瘤多形性治疗中的融合:走向精确靶向和转化的途径。","authors":"Amrita Arup Roy, Abhijeet Pandey, Namdev Dhas, Manasa Manjunath Hegde, Harendra S Parekh, Sai Balaji Andugulapati, Krishnadas Nandakumar, Bola Sadashiva Satish Rao, Srinivas Mutalik","doi":"10.1155/adpp/1847197","DOIUrl":null,"url":null,"abstract":"<p><p>Heat-shock protein 70 (HSP70) and nanotechnology have emerged as promising avenues in glioblastoma multiforme (GBM) therapy, addressing the critical challenges posed by its aggressive nature and therapeutic resistance. HSP70's dual role in cellular stress response and tumour survival emphasises its potential as both a biomarker and therapeutic target. This review explores the innovative integration of HSP70 with nanotechnology, emphasising advancements in imaging, drug delivery and combination therapies. Nanoparticles, including SPIONs, liposomes, gold nanoparticles and metal-organic frameworks, demonstrate enhanced targeting and therapeutic efficacy through HSP70 modulation. Functionalized nanocarriers exploit HSP70's tumour-specific overexpression to improve drug delivery, minimise off-target effects and overcome the blood-brain barrier. Emerging strategies such as chemophototherapy, immunotherapy and photothermal therapy leverage HSP70's interactions within the tumour microenvironment, enabling synergistic treatment modalities. The review also highlights translational challenges, including heterogeneity of GBM, regulatory hurdles and variability in the enhanced permeability and retention (EPR) effect. Integrating computational modelling, personalised approaches and adaptive trial designs is crucial for clinical translation. By bridging nanotechnology and molecular biology, HSP70-targeted strategies hold transformative potential to redefine GBM diagnosis and treatment, offering hope for improved survival and quality of life. <b>Trial Registration:</b> ClinicalTrials.gov identifier: NCT00054041 and NCT04628806.</p>","PeriodicalId":7369,"journal":{"name":"Advances in Pharmacological and Pharmaceutical Sciences","volume":"2025 ","pages":"1847197"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045689/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Confluence of Nanotechnology and Heat Shock Protein 70 in Pioneering Glioblastoma Multiforme Therapy: Forging Pathways Towards Precision Targeting and Transformation.\",\"authors\":\"Amrita Arup Roy, Abhijeet Pandey, Namdev Dhas, Manasa Manjunath Hegde, Harendra S Parekh, Sai Balaji Andugulapati, Krishnadas Nandakumar, Bola Sadashiva Satish Rao, Srinivas Mutalik\",\"doi\":\"10.1155/adpp/1847197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heat-shock protein 70 (HSP70) and nanotechnology have emerged as promising avenues in glioblastoma multiforme (GBM) therapy, addressing the critical challenges posed by its aggressive nature and therapeutic resistance. HSP70's dual role in cellular stress response and tumour survival emphasises its potential as both a biomarker and therapeutic target. This review explores the innovative integration of HSP70 with nanotechnology, emphasising advancements in imaging, drug delivery and combination therapies. Nanoparticles, including SPIONs, liposomes, gold nanoparticles and metal-organic frameworks, demonstrate enhanced targeting and therapeutic efficacy through HSP70 modulation. Functionalized nanocarriers exploit HSP70's tumour-specific overexpression to improve drug delivery, minimise off-target effects and overcome the blood-brain barrier. Emerging strategies such as chemophototherapy, immunotherapy and photothermal therapy leverage HSP70's interactions within the tumour microenvironment, enabling synergistic treatment modalities. The review also highlights translational challenges, including heterogeneity of GBM, regulatory hurdles and variability in the enhanced permeability and retention (EPR) effect. Integrating computational modelling, personalised approaches and adaptive trial designs is crucial for clinical translation. By bridging nanotechnology and molecular biology, HSP70-targeted strategies hold transformative potential to redefine GBM diagnosis and treatment, offering hope for improved survival and quality of life. <b>Trial Registration:</b> ClinicalTrials.gov identifier: NCT00054041 and NCT04628806.</p>\",\"PeriodicalId\":7369,\"journal\":{\"name\":\"Advances in Pharmacological and Pharmaceutical Sciences\",\"volume\":\"2025 \",\"pages\":\"1847197\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045689/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Pharmacological and Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/adpp/1847197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Pharmacological and Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/adpp/1847197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
The Confluence of Nanotechnology and Heat Shock Protein 70 in Pioneering Glioblastoma Multiforme Therapy: Forging Pathways Towards Precision Targeting and Transformation.
Heat-shock protein 70 (HSP70) and nanotechnology have emerged as promising avenues in glioblastoma multiforme (GBM) therapy, addressing the critical challenges posed by its aggressive nature and therapeutic resistance. HSP70's dual role in cellular stress response and tumour survival emphasises its potential as both a biomarker and therapeutic target. This review explores the innovative integration of HSP70 with nanotechnology, emphasising advancements in imaging, drug delivery and combination therapies. Nanoparticles, including SPIONs, liposomes, gold nanoparticles and metal-organic frameworks, demonstrate enhanced targeting and therapeutic efficacy through HSP70 modulation. Functionalized nanocarriers exploit HSP70's tumour-specific overexpression to improve drug delivery, minimise off-target effects and overcome the blood-brain barrier. Emerging strategies such as chemophototherapy, immunotherapy and photothermal therapy leverage HSP70's interactions within the tumour microenvironment, enabling synergistic treatment modalities. The review also highlights translational challenges, including heterogeneity of GBM, regulatory hurdles and variability in the enhanced permeability and retention (EPR) effect. Integrating computational modelling, personalised approaches and adaptive trial designs is crucial for clinical translation. By bridging nanotechnology and molecular biology, HSP70-targeted strategies hold transformative potential to redefine GBM diagnosis and treatment, offering hope for improved survival and quality of life. Trial Registration: ClinicalTrials.gov identifier: NCT00054041 and NCT04628806.