Victor H. V. Ribeiro, Joseph Gallagher, Carol Mallory-Smith, Judit Barroso, Caio A. C. G. Brunharo
{"title":"农业领域的多重起源还是广泛的基因流动?毛茛抗除草剂区域种群基因组学研究。","authors":"Victor H. V. Ribeiro, Joseph Gallagher, Carol Mallory-Smith, Judit Barroso, Caio A. C. G. Brunharo","doi":"10.1111/mec.17791","DOIUrl":null,"url":null,"abstract":"<p>The repeated evolution of herbicide resistance in agriculture provides an unprecedented opportunity to understand how organisms rapidly respond to strong anthropogenic-driven selection pressure. We recently identified agricultural populations of the grass species <i>Bromus tectorum</i> L. with resistance to multiple herbicides. To understand the evolutionary origins and spread of resistance, we investigated the resistance mechanisms to acetolactate synthase (ALS) inhibitors and photosystem II inhibitors, two widely used herbicide modes of action, in 49 <i>B. tectorum</i> populations. We assessed the genetic diversity, structure and relatedness in a subset of 21 populations. Resistance to ALS inhibitors was associated with multiple nonsynonymous mutations in <i>ALS</i>, the target site gene, despite the relatively small geographic region where populations originated, suggesting ALS inhibitor resistance evolution occurred multiple times in the region. We also found evidence that mechanisms not related to the target site evolved and were common in the populations studied. Resistance to photosystem II inhibitors was confirmed in two populations and was conferred by nonsynonymous mutations in the plastid gene <i>psbA</i>. Population genomics analyses suggested that ALS resistance in most populations, at the nucleotide level, spread via gene flow, except for one population where we found evidence that Pro-197-His mutations may have evolved in three separate events. Our results suggest that both gene flow via pollen and/or seed dispersal and multiple local evolutionary events were involved in the spread of herbicide-resistant <i>B. tectorum</i>. Our results provide an empirical example of the rapid repeated evolution of a trait under strong anthropogenic selection and elucidate the evolutionary origins of herbicide resistance in a plant species of agricultural importance.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 11","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17791","citationCount":"0","resultStr":"{\"title\":\"Multiple Origins or Widespread Gene Flow in Agricultural Fields? Regional Population Genomics of Herbicide Resistance in Bromus tectorum\",\"authors\":\"Victor H. V. Ribeiro, Joseph Gallagher, Carol Mallory-Smith, Judit Barroso, Caio A. C. G. Brunharo\",\"doi\":\"10.1111/mec.17791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The repeated evolution of herbicide resistance in agriculture provides an unprecedented opportunity to understand how organisms rapidly respond to strong anthropogenic-driven selection pressure. We recently identified agricultural populations of the grass species <i>Bromus tectorum</i> L. with resistance to multiple herbicides. To understand the evolutionary origins and spread of resistance, we investigated the resistance mechanisms to acetolactate synthase (ALS) inhibitors and photosystem II inhibitors, two widely used herbicide modes of action, in 49 <i>B. tectorum</i> populations. We assessed the genetic diversity, structure and relatedness in a subset of 21 populations. Resistance to ALS inhibitors was associated with multiple nonsynonymous mutations in <i>ALS</i>, the target site gene, despite the relatively small geographic region where populations originated, suggesting ALS inhibitor resistance evolution occurred multiple times in the region. We also found evidence that mechanisms not related to the target site evolved and were common in the populations studied. Resistance to photosystem II inhibitors was confirmed in two populations and was conferred by nonsynonymous mutations in the plastid gene <i>psbA</i>. Population genomics analyses suggested that ALS resistance in most populations, at the nucleotide level, spread via gene flow, except for one population where we found evidence that Pro-197-His mutations may have evolved in three separate events. Our results suggest that both gene flow via pollen and/or seed dispersal and multiple local evolutionary events were involved in the spread of herbicide-resistant <i>B. tectorum</i>. Our results provide an empirical example of the rapid repeated evolution of a trait under strong anthropogenic selection and elucidate the evolutionary origins of herbicide resistance in a plant species of agricultural importance.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\"34 11\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17791\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mec.17791\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.17791","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Multiple Origins or Widespread Gene Flow in Agricultural Fields? Regional Population Genomics of Herbicide Resistance in Bromus tectorum
The repeated evolution of herbicide resistance in agriculture provides an unprecedented opportunity to understand how organisms rapidly respond to strong anthropogenic-driven selection pressure. We recently identified agricultural populations of the grass species Bromus tectorum L. with resistance to multiple herbicides. To understand the evolutionary origins and spread of resistance, we investigated the resistance mechanisms to acetolactate synthase (ALS) inhibitors and photosystem II inhibitors, two widely used herbicide modes of action, in 49 B. tectorum populations. We assessed the genetic diversity, structure and relatedness in a subset of 21 populations. Resistance to ALS inhibitors was associated with multiple nonsynonymous mutations in ALS, the target site gene, despite the relatively small geographic region where populations originated, suggesting ALS inhibitor resistance evolution occurred multiple times in the region. We also found evidence that mechanisms not related to the target site evolved and were common in the populations studied. Resistance to photosystem II inhibitors was confirmed in two populations and was conferred by nonsynonymous mutations in the plastid gene psbA. Population genomics analyses suggested that ALS resistance in most populations, at the nucleotide level, spread via gene flow, except for one population where we found evidence that Pro-197-His mutations may have evolved in three separate events. Our results suggest that both gene flow via pollen and/or seed dispersal and multiple local evolutionary events were involved in the spread of herbicide-resistant B. tectorum. Our results provide an empirical example of the rapid repeated evolution of a trait under strong anthropogenic selection and elucidate the evolutionary origins of herbicide resistance in a plant species of agricultural importance.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms