Hongyuan Li, Yan Jiao, Yibing Shi, Qiumei Feng, Yongguang Gao
{"title":"双足DNA行走器集成共振能量转移构建了灵敏的电化学发光生物传感器用于血清素检测。","authors":"Hongyuan Li, Yan Jiao, Yibing Shi, Qiumei Feng, Yongguang Gao","doi":"10.1016/j.talanta.2025.128175","DOIUrl":null,"url":null,"abstract":"<p><p>The abnormal level of neurotransmitter serotonin often leads to the blood-brain barrier. Thus, it is urgent to develop a sensitive and efficient method for serotonin detection. Here, we constructed a resonance energy transfer-based electrochemiluminescence (ECL-RET) biosensor sensitized with bipedal DNA walker for the sensitive determination of serotonin. Benefitting from the specific recognition of aptamer to target and enrichment ability of magnetic bead separation, this system achieved the signal transduction of serotonin to nucleic acid and excellent selectivity for serotonin analysis among various analogues. The spectral overlap between the emission spectrum of CdS QDs (energy donor) and the absorption of Ag nanoclusters (Ag NCs, energy acceptor) enabled effective ECL-RET. Through proximity ligation, bipedal DNA walker driven by catalytic hairpin assembly (CHA) significantly accelerated the reaction kinetics and resulted in the amplified responses. Relying on the ECL quenching, serotonin was quantified with a linear detection range of 1 pM-1 μM and a low detection limit of 0.28 pM. More notably, the practical application of the sensor was tested in human serum with recovery rates ranging from 95.0 % to 105.7 %. The combination of ECL-RET, proximity ligation and CHA-driven bipedal DNA walker enabled the biosensor to represent a step forward in neurological-related disease diagnosis.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"293 ","pages":"128175"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bipedal DNA walker integrated resonance energy transfer to construct a sensitive electrochemiluminescence biosensor for serotonin detection.\",\"authors\":\"Hongyuan Li, Yan Jiao, Yibing Shi, Qiumei Feng, Yongguang Gao\",\"doi\":\"10.1016/j.talanta.2025.128175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The abnormal level of neurotransmitter serotonin often leads to the blood-brain barrier. Thus, it is urgent to develop a sensitive and efficient method for serotonin detection. Here, we constructed a resonance energy transfer-based electrochemiluminescence (ECL-RET) biosensor sensitized with bipedal DNA walker for the sensitive determination of serotonin. Benefitting from the specific recognition of aptamer to target and enrichment ability of magnetic bead separation, this system achieved the signal transduction of serotonin to nucleic acid and excellent selectivity for serotonin analysis among various analogues. The spectral overlap between the emission spectrum of CdS QDs (energy donor) and the absorption of Ag nanoclusters (Ag NCs, energy acceptor) enabled effective ECL-RET. Through proximity ligation, bipedal DNA walker driven by catalytic hairpin assembly (CHA) significantly accelerated the reaction kinetics and resulted in the amplified responses. Relying on the ECL quenching, serotonin was quantified with a linear detection range of 1 pM-1 μM and a low detection limit of 0.28 pM. More notably, the practical application of the sensor was tested in human serum with recovery rates ranging from 95.0 % to 105.7 %. The combination of ECL-RET, proximity ligation and CHA-driven bipedal DNA walker enabled the biosensor to represent a step forward in neurological-related disease diagnosis.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"293 \",\"pages\":\"128175\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2025.128175\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.128175","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Bipedal DNA walker integrated resonance energy transfer to construct a sensitive electrochemiluminescence biosensor for serotonin detection.
The abnormal level of neurotransmitter serotonin often leads to the blood-brain barrier. Thus, it is urgent to develop a sensitive and efficient method for serotonin detection. Here, we constructed a resonance energy transfer-based electrochemiluminescence (ECL-RET) biosensor sensitized with bipedal DNA walker for the sensitive determination of serotonin. Benefitting from the specific recognition of aptamer to target and enrichment ability of magnetic bead separation, this system achieved the signal transduction of serotonin to nucleic acid and excellent selectivity for serotonin analysis among various analogues. The spectral overlap between the emission spectrum of CdS QDs (energy donor) and the absorption of Ag nanoclusters (Ag NCs, energy acceptor) enabled effective ECL-RET. Through proximity ligation, bipedal DNA walker driven by catalytic hairpin assembly (CHA) significantly accelerated the reaction kinetics and resulted in the amplified responses. Relying on the ECL quenching, serotonin was quantified with a linear detection range of 1 pM-1 μM and a low detection limit of 0.28 pM. More notably, the practical application of the sensor was tested in human serum with recovery rates ranging from 95.0 % to 105.7 %. The combination of ECL-RET, proximity ligation and CHA-driven bipedal DNA walker enabled the biosensor to represent a step forward in neurological-related disease diagnosis.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.