{"title":"电化学发光侧流免疫传感器使用鲁米诺标记银纳米粒子高灵敏度和定量检测心脏肌钙蛋白I。","authors":"Jun Chen, Xuanxu Nan, Li Yang, Yue Cui","doi":"10.1016/j.talanta.2025.128159","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac troponin I (cTnI) is a highly specific biomarker of cardiomyocyte injury, released during cell disintegration and necrosis, and is the gold standard for diagnosing acute myocardial infarction (AMI). At the onset of AMI, cTnI appears in very low concentrations (pg/mL level), necessitating the development of highly sensitive and rapid detection sensors. In this study, an electrochemiluminescence lateral flow immunosensor (ECL-LFI) was designed using luminol-labeled silver nanoparticles (luminol@AgNPs) for the sensitive and quantitative detection of cTnI. A screen-printed electrode (SPE) was integrated beneath the nitrocellulose (NC) membrane with plastic plates of the same thickness applied on both sides of the SPE to ensure a smooth flow surface. Upon addition of cTnI and the luminol-H<sub>2</sub>O<sub>2</sub> system, sandwich immune complexes formed by antibody-functionalized luminol@AgNPs on the strips generated electrochemiluminescent (ECL) signals. The ECL-LFI exhibited a broad linear detection range from 5 pg/mL to 100 ng/mL, with a detection limit as low as 1.6 pg/mL. Additionally, the results show excellent correlation with clinical tests, demonstrating that the ECL-LFI provides a promising point-of-care tool for the early diagnosis of AMI and other diseases.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"293 ","pages":"128159"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemiluminescence lateral flow immunosensor using luminol-labeled silver nanoparticles for highly sensitive and quantitative detection of cardiac troponin I.\",\"authors\":\"Jun Chen, Xuanxu Nan, Li Yang, Yue Cui\",\"doi\":\"10.1016/j.talanta.2025.128159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiac troponin I (cTnI) is a highly specific biomarker of cardiomyocyte injury, released during cell disintegration and necrosis, and is the gold standard for diagnosing acute myocardial infarction (AMI). At the onset of AMI, cTnI appears in very low concentrations (pg/mL level), necessitating the development of highly sensitive and rapid detection sensors. In this study, an electrochemiluminescence lateral flow immunosensor (ECL-LFI) was designed using luminol-labeled silver nanoparticles (luminol@AgNPs) for the sensitive and quantitative detection of cTnI. A screen-printed electrode (SPE) was integrated beneath the nitrocellulose (NC) membrane with plastic plates of the same thickness applied on both sides of the SPE to ensure a smooth flow surface. Upon addition of cTnI and the luminol-H<sub>2</sub>O<sub>2</sub> system, sandwich immune complexes formed by antibody-functionalized luminol@AgNPs on the strips generated electrochemiluminescent (ECL) signals. The ECL-LFI exhibited a broad linear detection range from 5 pg/mL to 100 ng/mL, with a detection limit as low as 1.6 pg/mL. Additionally, the results show excellent correlation with clinical tests, demonstrating that the ECL-LFI provides a promising point-of-care tool for the early diagnosis of AMI and other diseases.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"293 \",\"pages\":\"128159\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2025.128159\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.128159","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Electrochemiluminescence lateral flow immunosensor using luminol-labeled silver nanoparticles for highly sensitive and quantitative detection of cardiac troponin I.
Cardiac troponin I (cTnI) is a highly specific biomarker of cardiomyocyte injury, released during cell disintegration and necrosis, and is the gold standard for diagnosing acute myocardial infarction (AMI). At the onset of AMI, cTnI appears in very low concentrations (pg/mL level), necessitating the development of highly sensitive and rapid detection sensors. In this study, an electrochemiluminescence lateral flow immunosensor (ECL-LFI) was designed using luminol-labeled silver nanoparticles (luminol@AgNPs) for the sensitive and quantitative detection of cTnI. A screen-printed electrode (SPE) was integrated beneath the nitrocellulose (NC) membrane with plastic plates of the same thickness applied on both sides of the SPE to ensure a smooth flow surface. Upon addition of cTnI and the luminol-H2O2 system, sandwich immune complexes formed by antibody-functionalized luminol@AgNPs on the strips generated electrochemiluminescent (ECL) signals. The ECL-LFI exhibited a broad linear detection range from 5 pg/mL to 100 ng/mL, with a detection limit as low as 1.6 pg/mL. Additionally, the results show excellent correlation with clinical tests, demonstrating that the ECL-LFI provides a promising point-of-care tool for the early diagnosis of AMI and other diseases.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.