Nikoletta-Maria Koutroumpa, Maria Antoniou, Dimitra-Danai Varsou, Konstantinos D Papavasileiou, Nikolaos K Sidiropoulos, Christoforos Kyprianou, Andreas Tsoumanis, Haralambos Sarimveis, Iseult Lynch, Georgia Melagraki, Antreas Afantitis
{"title":"二氧化钛:一个集成的工具,用于硅分子性质预测和基于纳米结构的建模。","authors":"Nikoletta-Maria Koutroumpa, Maria Antoniou, Dimitra-Danai Varsou, Konstantinos D Papavasileiou, Nikolaos K Sidiropoulos, Christoforos Kyprianou, Andreas Tsoumanis, Haralambos Sarimveis, Iseult Lynch, Georgia Melagraki, Antreas Afantitis","doi":"10.1007/s11030-025-11196-5","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in drug discovery and material design rely heavily on in silico analysis of extensive compound datasets and accurate assessment of their properties and activities through computational methods. Efficient and reliable prediction of molecular properties is crucial for rational compound design in the chemical industry. To address this need, we have developed predictive models for nine key properties, including the octanol/water partition coefficient, water solubility, experimental hydration free energy in water, vapor pressure, boiling point, cytotoxicity, mutagenicity, blood-brain barrier permeability, and bioconcentration factor. These models have demonstrated high predictive accuracy and have undergone thorough validation in accordance with OECD test guidelines. The models are seamlessly integrated into the Enalos Cloud Platform through Titania ( https://enaloscloud.novamechanics.com/EnalosWebApps/titania/ ), a comprehensive web-based application designed to democratize access to advanced computational tools. Titania features an intuitive, user-friendly interface, allowing researchers, regardless of computational expertise, to easily employ models for property prediction of novel compounds. The platform enables informed decision-making and supports innovation in drug discovery and material design. We aspire for this tool to become a valuable resource for the scientific community, enhancing both the efficiency and accuracy of property and toxicity predictions.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Titania: an integrated tool for in silico molecular property prediction and NAM-based modeling.\",\"authors\":\"Nikoletta-Maria Koutroumpa, Maria Antoniou, Dimitra-Danai Varsou, Konstantinos D Papavasileiou, Nikolaos K Sidiropoulos, Christoforos Kyprianou, Andreas Tsoumanis, Haralambos Sarimveis, Iseult Lynch, Georgia Melagraki, Antreas Afantitis\",\"doi\":\"10.1007/s11030-025-11196-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advances in drug discovery and material design rely heavily on in silico analysis of extensive compound datasets and accurate assessment of their properties and activities through computational methods. Efficient and reliable prediction of molecular properties is crucial for rational compound design in the chemical industry. To address this need, we have developed predictive models for nine key properties, including the octanol/water partition coefficient, water solubility, experimental hydration free energy in water, vapor pressure, boiling point, cytotoxicity, mutagenicity, blood-brain barrier permeability, and bioconcentration factor. These models have demonstrated high predictive accuracy and have undergone thorough validation in accordance with OECD test guidelines. The models are seamlessly integrated into the Enalos Cloud Platform through Titania ( https://enaloscloud.novamechanics.com/EnalosWebApps/titania/ ), a comprehensive web-based application designed to democratize access to advanced computational tools. Titania features an intuitive, user-friendly interface, allowing researchers, regardless of computational expertise, to easily employ models for property prediction of novel compounds. The platform enables informed decision-making and supports innovation in drug discovery and material design. We aspire for this tool to become a valuable resource for the scientific community, enhancing both the efficiency and accuracy of property and toxicity predictions.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11196-5\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11196-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Titania: an integrated tool for in silico molecular property prediction and NAM-based modeling.
Advances in drug discovery and material design rely heavily on in silico analysis of extensive compound datasets and accurate assessment of their properties and activities through computational methods. Efficient and reliable prediction of molecular properties is crucial for rational compound design in the chemical industry. To address this need, we have developed predictive models for nine key properties, including the octanol/water partition coefficient, water solubility, experimental hydration free energy in water, vapor pressure, boiling point, cytotoxicity, mutagenicity, blood-brain barrier permeability, and bioconcentration factor. These models have demonstrated high predictive accuracy and have undergone thorough validation in accordance with OECD test guidelines. The models are seamlessly integrated into the Enalos Cloud Platform through Titania ( https://enaloscloud.novamechanics.com/EnalosWebApps/titania/ ), a comprehensive web-based application designed to democratize access to advanced computational tools. Titania features an intuitive, user-friendly interface, allowing researchers, regardless of computational expertise, to easily employ models for property prediction of novel compounds. The platform enables informed decision-making and supports innovation in drug discovery and material design. We aspire for this tool to become a valuable resource for the scientific community, enhancing both the efficiency and accuracy of property and toxicity predictions.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;