阿特拉津及其有毒产物的热分解。

IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL
Nathan H. Weber, John C. Mackie, Justin Bolam, John A. Lucas, Michael Stockenhuber and Eric M. Kennedy
{"title":"阿特拉津及其有毒产物的热分解。","authors":"Nathan H. Weber, John C. Mackie, Justin Bolam, John A. Lucas, Michael Stockenhuber and Eric M. Kennedy","doi":"10.1039/D4EM00751D","DOIUrl":null,"url":null,"abstract":"<p >Atrazine (ATZ) is one of the most widely used herbicides and is highly scrutinized due to its environmental impact. Given its extensive use, ATZ is likely to be exposed to high-temperature conditions such as those encountered during wildfires, incineration, or thermal desorption processes. However, there are limited experimental data on the thermal decomposition of ATZ. The present study investigates the decomposition of ATZ in a flow reactor constructed of α-alumina at temperatures between 400 and 800 °C. At temperatures above 400 °C, thermal decomposition was observed to occur and the formation of HCl and several hazardous chemicals, including hydrogen cyanide and cyanoacetylene were observed during the thermal decomposition of ATZ. Quantum chemical calculations were also performed to elucidate the decomposition pathways and determine the relevant reaction rates. These findings provide crucial insights into the risks associated with exposing ATZ to high temperatures and the potential release of harmful gases from its thermal decomposition.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 5","pages":" 1448-1457"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal decomposition of atrazine and its toxic products†\",\"authors\":\"Nathan H. Weber, John C. Mackie, Justin Bolam, John A. Lucas, Michael Stockenhuber and Eric M. Kennedy\",\"doi\":\"10.1039/D4EM00751D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Atrazine (ATZ) is one of the most widely used herbicides and is highly scrutinized due to its environmental impact. Given its extensive use, ATZ is likely to be exposed to high-temperature conditions such as those encountered during wildfires, incineration, or thermal desorption processes. However, there are limited experimental data on the thermal decomposition of ATZ. The present study investigates the decomposition of ATZ in a flow reactor constructed of α-alumina at temperatures between 400 and 800 °C. At temperatures above 400 °C, thermal decomposition was observed to occur and the formation of HCl and several hazardous chemicals, including hydrogen cyanide and cyanoacetylene were observed during the thermal decomposition of ATZ. Quantum chemical calculations were also performed to elucidate the decomposition pathways and determine the relevant reaction rates. These findings provide crucial insights into the risks associated with exposing ATZ to high temperatures and the potential release of harmful gases from its thermal decomposition.</p>\",\"PeriodicalId\":74,\"journal\":{\"name\":\"Environmental Science: Processes & Impacts\",\"volume\":\" 5\",\"pages\":\" 1448-1457\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Processes & Impacts\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/em/d4em00751d\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/em/d4em00751d","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

阿特拉津(ATZ)是使用最广泛的除草剂之一,由于其对环境的影响而受到严格审查。由于其广泛使用,ATZ可能会暴露在高温条件下,例如在野火,焚烧或热脱附过程中遇到的条件。然而,关于ATZ热分解的实验数据有限。本研究研究了在α-氧化铝流动反应器中,在400 ~ 800℃的温度下ATZ的分解。在温度高于400℃时,观察到ATZ发生热分解,并在热分解过程中观察到HCl和几种有害化学物质的形成,包括氰化氢和氰乙炔。量子化学计算也被用来阐明分解途径和确定相关的反应速率。这些发现为ATZ暴露在高温下的风险以及其热分解可能释放的有害气体提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal decomposition of atrazine and its toxic products†

Atrazine (ATZ) is one of the most widely used herbicides and is highly scrutinized due to its environmental impact. Given its extensive use, ATZ is likely to be exposed to high-temperature conditions such as those encountered during wildfires, incineration, or thermal desorption processes. However, there are limited experimental data on the thermal decomposition of ATZ. The present study investigates the decomposition of ATZ in a flow reactor constructed of α-alumina at temperatures between 400 and 800 °C. At temperatures above 400 °C, thermal decomposition was observed to occur and the formation of HCl and several hazardous chemicals, including hydrogen cyanide and cyanoacetylene were observed during the thermal decomposition of ATZ. Quantum chemical calculations were also performed to elucidate the decomposition pathways and determine the relevant reaction rates. These findings provide crucial insights into the risks associated with exposing ATZ to high temperatures and the potential release of harmful gases from its thermal decomposition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Science: Processes & Impacts
Environmental Science: Processes & Impacts CHEMISTRY, ANALYTICAL-ENVIRONMENTAL SCIENCES
CiteScore
9.50
自引率
3.60%
发文量
202
审稿时长
1 months
期刊介绍: Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信