广义正交de Bruijn和Kautz序列。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-03-30 DOI:10.3390/e27040366
Yuan-Pon Chen, Jin Sima, Olgica Milenkovic
{"title":"广义正交de Bruijn和Kautz序列。","authors":"Yuan-Pon Chen, Jin Sima, Olgica Milenkovic","doi":"10.3390/e27040366","DOIUrl":null,"url":null,"abstract":"<p><p>A de Bruijn sequence of order <i>k</i> over a finite alphabet is a cyclic sequence with the property that it contains every possible <i>k</i>-sequence as a substring exactly once. Orthogonal de Bruijn sequences are the collections of de Bruijn sequences of the same order, <i>k</i>, that satisfy the joint constraint that every (k+1)-sequence appears as a substring in, at most, one of the sequences in the collection. Both de Bruijn and orthogonal de Bruijn sequences have found numerous applications in synthetic biology, although the latter remain largely unexplored in the coding theory literature. Here, we study three relevant practical generalizations of orthogonal de Bruijn sequences, where we relax either the constraint that every (k+1)-sequence appears exactly once or the sequences themselves are de Bruijn rather than balanced de Bruijn sequences. We also provide lower and upper bounds on the number of fixed-weight orthogonal de Bruijn sequences. The paper concludes with parallel results for orthogonal nonbinary Kautz sequences, which satisfy similar constraints as de Bruijn sequences, except for being only required to cover all subsequences of length <i>k</i> whose maximum run length equals one.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025929/pdf/","citationCount":"0","resultStr":"{\"title\":\"Generalized Orthogonal de Bruijn and Kautz Sequences.\",\"authors\":\"Yuan-Pon Chen, Jin Sima, Olgica Milenkovic\",\"doi\":\"10.3390/e27040366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A de Bruijn sequence of order <i>k</i> over a finite alphabet is a cyclic sequence with the property that it contains every possible <i>k</i>-sequence as a substring exactly once. Orthogonal de Bruijn sequences are the collections of de Bruijn sequences of the same order, <i>k</i>, that satisfy the joint constraint that every (k+1)-sequence appears as a substring in, at most, one of the sequences in the collection. Both de Bruijn and orthogonal de Bruijn sequences have found numerous applications in synthetic biology, although the latter remain largely unexplored in the coding theory literature. Here, we study three relevant practical generalizations of orthogonal de Bruijn sequences, where we relax either the constraint that every (k+1)-sequence appears exactly once or the sequences themselves are de Bruijn rather than balanced de Bruijn sequences. We also provide lower and upper bounds on the number of fixed-weight orthogonal de Bruijn sequences. The paper concludes with parallel results for orthogonal nonbinary Kautz sequences, which satisfy similar constraints as de Bruijn sequences, except for being only required to cover all subsequences of length <i>k</i> whose maximum run length equals one.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025929/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040366\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040366","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有限字母表上k阶的德布鲁因序列是一个循环序列,它的性质是它将所有可能的k序列作为子串只包含一次。正交de Bruijn序列是相同阶数k的de Bruijn序列的集合,它们满足联合约束,即每个(k+1)序列最多作为集合中一个序列的子串出现。de Bruijn序列和正交de Bruijn序列在合成生物学中都有许多应用,尽管后者在编码理论文献中仍未被广泛探索。本文研究了正交de Bruijn序列的三个相关的实用推广,放宽了每个(k+1)-序列只出现一次的约束,或者序列本身是de Bruijn序列而不是平衡de Bruijn序列。我们还给出了定权正交de Bruijn序列数目的下界和上界。本文得到了正交非二元Kautz序列的并行结果,它满足与de Bruijn序列相似的约束条件,只是它只需要覆盖长度为k且最大运行长度为1的所有子序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Orthogonal de Bruijn and Kautz Sequences.

A de Bruijn sequence of order k over a finite alphabet is a cyclic sequence with the property that it contains every possible k-sequence as a substring exactly once. Orthogonal de Bruijn sequences are the collections of de Bruijn sequences of the same order, k, that satisfy the joint constraint that every (k+1)-sequence appears as a substring in, at most, one of the sequences in the collection. Both de Bruijn and orthogonal de Bruijn sequences have found numerous applications in synthetic biology, although the latter remain largely unexplored in the coding theory literature. Here, we study three relevant practical generalizations of orthogonal de Bruijn sequences, where we relax either the constraint that every (k+1)-sequence appears exactly once or the sequences themselves are de Bruijn rather than balanced de Bruijn sequences. We also provide lower and upper bounds on the number of fixed-weight orthogonal de Bruijn sequences. The paper concludes with parallel results for orthogonal nonbinary Kautz sequences, which satisfy similar constraints as de Bruijn sequences, except for being only required to cover all subsequences of length k whose maximum run length equals one.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信