非洲猪瘟病毒内膜p54蛋白单克隆抗体新抗原表位的发现

IF 2.7 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Animals Pub Date : 2025-04-30 DOI:10.3390/ani15091296
Jiajia Zhang, Kaili Zhang, Shaohua Sun, Ping He, Dafu Deng, Hanrong Lv, Mingwang Xie, Pingping Zhang, Wanglong Zheng, Nanhua Chen, Jianfa Bai, Jianzhong Zhu
{"title":"非洲猪瘟病毒内膜p54蛋白单克隆抗体新抗原表位的发现","authors":"Jiajia Zhang, Kaili Zhang, Shaohua Sun, Ping He, Dafu Deng, Hanrong Lv, Mingwang Xie, Pingping Zhang, Wanglong Zheng, Nanhua Chen, Jianfa Bai, Jianzhong Zhu","doi":"10.3390/ani15091296","DOIUrl":null,"url":null,"abstract":"<p><p>African swine fever (ASF) is caused by the African swine fever virus (ASFV); infection in domestic pigs and wild boars leads to a highly contagious, hemorrhagic disease. The p54 protein is encoded by the ASFV E183L gene and is an important structural protein located on the inner envelope of the virus. It is involved in processes of virus assembly, apoptosis induction, and neutralizing antibody production. In this study, three specific monoclonal antibodies (mAbs) against ASFV p54 protein were generated, namely 6B11, 3E3, and 3C10, from mice who were immunized with recombinant prokaryotic p54-truncated protein. Three novel linear B cell epitopes, recognized by the mAbs, were revealed: <sup>60</sup>AAIEEEDIQFINP<sup>72</sup>, <sup>128</sup>MATGGPAAAPAAASAPAHPAE<sup>148</sup>, and <sup>163</sup>MSAIENLRQRNTY<sup>175</sup>. The epitopes <sup>60</sup>AAIEEEDIQFINP<sup>72</sup> and <sup>163</sup>MSAIENLRQRNTY<sup>175</sup> were highly conserved in genotype I and II ASFV strains. In addition, the epitope peptide ELISA can be used for the detection of ASFV antibodies. Our work provides new insights for p54 antigenicity and an alternative tool for serological diagnosis of ASF.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070866/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Novel Antigenic Epitopes of African Swine Fever Virus Inner Membrane p54 Protein Revealed by Monoclonal Antibodies.\",\"authors\":\"Jiajia Zhang, Kaili Zhang, Shaohua Sun, Ping He, Dafu Deng, Hanrong Lv, Mingwang Xie, Pingping Zhang, Wanglong Zheng, Nanhua Chen, Jianfa Bai, Jianzhong Zhu\",\"doi\":\"10.3390/ani15091296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>African swine fever (ASF) is caused by the African swine fever virus (ASFV); infection in domestic pigs and wild boars leads to a highly contagious, hemorrhagic disease. The p54 protein is encoded by the ASFV E183L gene and is an important structural protein located on the inner envelope of the virus. It is involved in processes of virus assembly, apoptosis induction, and neutralizing antibody production. In this study, three specific monoclonal antibodies (mAbs) against ASFV p54 protein were generated, namely 6B11, 3E3, and 3C10, from mice who were immunized with recombinant prokaryotic p54-truncated protein. Three novel linear B cell epitopes, recognized by the mAbs, were revealed: <sup>60</sup>AAIEEEDIQFINP<sup>72</sup>, <sup>128</sup>MATGGPAAAPAAASAPAHPAE<sup>148</sup>, and <sup>163</sup>MSAIENLRQRNTY<sup>175</sup>. The epitopes <sup>60</sup>AAIEEEDIQFINP<sup>72</sup> and <sup>163</sup>MSAIENLRQRNTY<sup>175</sup> were highly conserved in genotype I and II ASFV strains. In addition, the epitope peptide ELISA can be used for the detection of ASFV antibodies. Our work provides new insights for p54 antigenicity and an alternative tool for serological diagnosis of ASF.</p>\",\"PeriodicalId\":7955,\"journal\":{\"name\":\"Animals\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070866/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animals\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/ani15091296\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15091296","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

非洲猪瘟(ASF)是由非洲猪瘟病毒引起的;家猪和野猪的感染导致一种高度传染性的出血性疾病。p54蛋白由ASFV E183L基因编码,是位于病毒内包膜上的重要结构蛋白。它参与了病毒组装、细胞凋亡诱导和中和抗体产生的过程。本研究利用重组原核p54截断蛋白免疫小鼠,制备了3种针对ASFV p54蛋白的特异性单克隆抗体(mAbs),分别为6B11、3E3和3C10。三个新的线性B细胞表位被单克隆抗体识别:60AAIEEEDIQFINP72, 128MATGGPAAAPAAASAPAHPAE148和163MSAIENLRQRNTY175。表位60AAIEEEDIQFINP72和163MSAIENLRQRNTY175在基因型I和基因型II ASFV株中高度保守。此外,表位肽ELISA还可用于ASFV抗体的检测。我们的工作为p54抗原性提供了新的见解,并为非洲猪瘟的血清学诊断提供了另一种工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Novel Antigenic Epitopes of African Swine Fever Virus Inner Membrane p54 Protein Revealed by Monoclonal Antibodies.

African swine fever (ASF) is caused by the African swine fever virus (ASFV); infection in domestic pigs and wild boars leads to a highly contagious, hemorrhagic disease. The p54 protein is encoded by the ASFV E183L gene and is an important structural protein located on the inner envelope of the virus. It is involved in processes of virus assembly, apoptosis induction, and neutralizing antibody production. In this study, three specific monoclonal antibodies (mAbs) against ASFV p54 protein were generated, namely 6B11, 3E3, and 3C10, from mice who were immunized with recombinant prokaryotic p54-truncated protein. Three novel linear B cell epitopes, recognized by the mAbs, were revealed: 60AAIEEEDIQFINP72, 128MATGGPAAAPAAASAPAHPAE148, and 163MSAIENLRQRNTY175. The epitopes 60AAIEEEDIQFINP72 and 163MSAIENLRQRNTY175 were highly conserved in genotype I and II ASFV strains. In addition, the epitope peptide ELISA can be used for the detection of ASFV antibodies. Our work provides new insights for p54 antigenicity and an alternative tool for serological diagnosis of ASF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Animals
Animals Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍: Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信