{"title":"基于bret聚焦方法揭示内分泌干扰中的内质网二聚化动力学。","authors":"Soomin Yum, Haksoo Lee, Yong-Kook Kwon, Gunyoung Lee, Hye-Young Lee, HyeSook Youn, BuHyun Youn","doi":"10.1080/19768354.2025.2481984","DOIUrl":null,"url":null,"abstract":"<p><p>Endocrine-disrupting chemicals (EDCs) are exogenous compounds that interact with the estrogen receptor (ER), thereby disrupting estrogen-mediated signaling. In a previous study, we employed a bioluminescence resonance energy transfer (BRET) system to assess ER dimerization for detecting EDCs. To further determine whether the BRET assay could be used independently to identify EDCs, we investigated ER-EDC interactions before and after dimerization. Results from isothermal titration calorimetry (ITC) and dynamic light scattering (DLS) revealed that ER dimerization can be mediated by EDCs. Consequently, the BRET assay proved effective in detecting dimerization and clarifying its relevance to EDC-induced signaling disruption. Additionally, to examine EDC-induced transcriptional changes, we performed chromatin immunoprecipitation sequencing (ChIP-seq), followed by gene ontology (GO) analysis. These analyses demonstrated that EDCs affect various signaling pathways, including those involved in antibody-dependent cytotoxicity, bone morphogenetic protein (BMP) signaling in cardiac induction, and hepatocyte growth factor receptor signaling. Overall, this study elucidates the molecular mechanisms by which EDCs influence ER dimerization and signaling. These findings highlight the utility of the BRET-based assay for EDC detection and contribute to a deeper understanding of the systemic effects of EDCs on endocrine disruption.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"29 1","pages":"282-295"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12039421/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling ER dimerization dynamics in endocrine disruption based on a BRET-focused approach.\",\"authors\":\"Soomin Yum, Haksoo Lee, Yong-Kook Kwon, Gunyoung Lee, Hye-Young Lee, HyeSook Youn, BuHyun Youn\",\"doi\":\"10.1080/19768354.2025.2481984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endocrine-disrupting chemicals (EDCs) are exogenous compounds that interact with the estrogen receptor (ER), thereby disrupting estrogen-mediated signaling. In a previous study, we employed a bioluminescence resonance energy transfer (BRET) system to assess ER dimerization for detecting EDCs. To further determine whether the BRET assay could be used independently to identify EDCs, we investigated ER-EDC interactions before and after dimerization. Results from isothermal titration calorimetry (ITC) and dynamic light scattering (DLS) revealed that ER dimerization can be mediated by EDCs. Consequently, the BRET assay proved effective in detecting dimerization and clarifying its relevance to EDC-induced signaling disruption. Additionally, to examine EDC-induced transcriptional changes, we performed chromatin immunoprecipitation sequencing (ChIP-seq), followed by gene ontology (GO) analysis. These analyses demonstrated that EDCs affect various signaling pathways, including those involved in antibody-dependent cytotoxicity, bone morphogenetic protein (BMP) signaling in cardiac induction, and hepatocyte growth factor receptor signaling. Overall, this study elucidates the molecular mechanisms by which EDCs influence ER dimerization and signaling. These findings highlight the utility of the BRET-based assay for EDC detection and contribute to a deeper understanding of the systemic effects of EDCs on endocrine disruption.</p>\",\"PeriodicalId\":7804,\"journal\":{\"name\":\"Animal Cells and Systems\",\"volume\":\"29 1\",\"pages\":\"282-295\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12039421/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Cells and Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/19768354.2025.2481984\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Cells and Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19768354.2025.2481984","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Unraveling ER dimerization dynamics in endocrine disruption based on a BRET-focused approach.
Endocrine-disrupting chemicals (EDCs) are exogenous compounds that interact with the estrogen receptor (ER), thereby disrupting estrogen-mediated signaling. In a previous study, we employed a bioluminescence resonance energy transfer (BRET) system to assess ER dimerization for detecting EDCs. To further determine whether the BRET assay could be used independently to identify EDCs, we investigated ER-EDC interactions before and after dimerization. Results from isothermal titration calorimetry (ITC) and dynamic light scattering (DLS) revealed that ER dimerization can be mediated by EDCs. Consequently, the BRET assay proved effective in detecting dimerization and clarifying its relevance to EDC-induced signaling disruption. Additionally, to examine EDC-induced transcriptional changes, we performed chromatin immunoprecipitation sequencing (ChIP-seq), followed by gene ontology (GO) analysis. These analyses demonstrated that EDCs affect various signaling pathways, including those involved in antibody-dependent cytotoxicity, bone morphogenetic protein (BMP) signaling in cardiac induction, and hepatocyte growth factor receptor signaling. Overall, this study elucidates the molecular mechanisms by which EDCs influence ER dimerization and signaling. These findings highlight the utility of the BRET-based assay for EDC detection and contribute to a deeper understanding of the systemic effects of EDCs on endocrine disruption.
期刊介绍:
Animal Cells and Systems is the official journal of the Korean Society for Integrative Biology. This international, peer-reviewed journal publishes original papers that cover diverse aspects of biological sciences including Bioinformatics and Systems Biology, Developmental Biology, Evolution and Systematic Biology, Population Biology, & Animal Behaviour, Molecular and Cellular Biology, Neurobiology and Immunology, and Translational Medicine.