电压门控钠通道中的预组织电场。

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
ChemBioChem Pub Date : 2025-05-06 DOI:10.1002/cbic.202500314
Yi Zheng, Taoyi Chen, Valerie Vaissier Welborn
{"title":"电压门控钠通道中的预组织电场。","authors":"Yi Zheng, Taoyi Chen, Valerie Vaissier Welborn","doi":"10.1002/cbic.202500314","DOIUrl":null,"url":null,"abstract":"<p><p>Enzymes are reported to catalyze reactions by generating electric fields that promote the evolution of the reaction in the active site. Although seldom used outside enzymatic catalysis, electrostatic preorganization theory and language of electric fields can be generalized to other biological macromolecules. Herein, we performed molecular dynamics simulations of human Na<sub>v</sub>1.5, Na<sub>v</sub>1.6, and Na<sub>v</sub>1.7 with the atomic multipole optmimized energetics for biomolecular applications  polarizable force field. We show that in the absence of an external potential, charged and uncharged residues generate strong electric fields that assist in Na<sup>+</sup> motion in the pore. This work emphasizes the importance of charge-dipole interactions in modulating Na<sup>+</sup> dynamics, in addition to charge-charge interactions, the focus of a majority of previous studies. Finally, we find that residues share a high level of mutual information through electric fields that can enable the optimization of allosteric pathways.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e2500314"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preorganized Electric Fields in Voltage-Gated Sodium Channels.\",\"authors\":\"Yi Zheng, Taoyi Chen, Valerie Vaissier Welborn\",\"doi\":\"10.1002/cbic.202500314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enzymes are reported to catalyze reactions by generating electric fields that promote the evolution of the reaction in the active site. Although seldom used outside enzymatic catalysis, electrostatic preorganization theory and language of electric fields can be generalized to other biological macromolecules. Herein, we performed molecular dynamics simulations of human Na<sub>v</sub>1.5, Na<sub>v</sub>1.6, and Na<sub>v</sub>1.7 with the atomic multipole optmimized energetics for biomolecular applications  polarizable force field. We show that in the absence of an external potential, charged and uncharged residues generate strong electric fields that assist in Na<sup>+</sup> motion in the pore. This work emphasizes the importance of charge-dipole interactions in modulating Na<sup>+</sup> dynamics, in addition to charge-charge interactions, the focus of a majority of previous studies. Finally, we find that residues share a high level of mutual information through electric fields that can enable the optimization of allosteric pathways.</p>\",\"PeriodicalId\":140,\"journal\":{\"name\":\"ChemBioChem\",\"volume\":\" \",\"pages\":\"e2500314\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioChem\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cbic.202500314\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202500314","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

据报道,酶通过产生电场来催化反应,促进活性部位的反应进化。静电预组织理论和电场语言虽然很少用于酶催化之外,但可以推广到其他生物大分子。本文利用AMOEBA极化力场对人体Nav1.5、Nav1.6和Nav1.7进行了分子动力学模拟。我们发现,在没有外部电位的情况下,带电和不带电的残基会产生强大的电场,帮助Na+在孔隙中运动。我们的工作强调了电荷-偶极相互作用在调制Na+动力学中的重要性,除了电荷-电荷相互作用,这是大多数先前研究的重点。最后,我们发现残基通过电场共享高水平的互信息,这可以优化变构途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preorganized Electric Fields in Voltage-Gated Sodium Channels.

Enzymes are reported to catalyze reactions by generating electric fields that promote the evolution of the reaction in the active site. Although seldom used outside enzymatic catalysis, electrostatic preorganization theory and language of electric fields can be generalized to other biological macromolecules. Herein, we performed molecular dynamics simulations of human Nav1.5, Nav1.6, and Nav1.7 with the atomic multipole optmimized energetics for biomolecular applications  polarizable force field. We show that in the absence of an external potential, charged and uncharged residues generate strong electric fields that assist in Na+ motion in the pore. This work emphasizes the importance of charge-dipole interactions in modulating Na+ dynamics, in addition to charge-charge interactions, the focus of a majority of previous studies. Finally, we find that residues share a high level of mutual information through electric fields that can enable the optimization of allosteric pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信