Lei Jia, Lei Xu, Yanfei Cai, Yun Chen, Jian Jin, Li Yu, Jingyu Zhu
{"title":"增强PI3Kγ抑制剂的发现:一种基于机器学习的虚拟筛选方法,整合了药效团、对接和分子描述符。","authors":"Lei Jia, Lei Xu, Yanfei Cai, Yun Chen, Jian Jin, Li Yu, Jingyu Zhu","doi":"10.1007/s11030-025-11216-4","DOIUrl":null,"url":null,"abstract":"<p><p>PI3Kγ is a lipid kinase that is expressed primarily in leukocytes and plays a significant role in tumors, inflammation, and autoimmune diseases. Consequently, considerable attention has been given to the development of pharmacological inhibitors of PI3Kγ. Recently, machine learning-based virtual screening approaches have been increasingly applied in new drug discovery research, potentially providing innovative strategies for the development of PI3Kγ inhibitors. Thus, in this study, we developed a naïve Bayesian classification (NBC) model that integrates molecular descriptors, molecular fingerprints, molecular docking, and pharmacophore models for virtual screening of the PI3Kγ protein. The validation results indicated that the optimal model demonstrated significant potential for differentiating between active and inactive compounds, as well as a reliable ability to identify true PI3Kγ inhibitors with defined biological activity. Additionally, the optimal NBC model provided favorable and unfavorable fragments for PI3Kγ inhibitors, which will help guide the design and discovery of novel PI3Kγ inhibitors. Finally, the optimal NBC model was employed to perform virtual screening on the ChEMBL database, resulting in the identification of several compounds with high potential as PI3Kγ inhibitors. We anticipate that the developed machine learning-based virtual screening approach will offer valuable insights and guidance for the development of novel PI3Kγ inhibitors.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing PI3Kγ inhibitor discovery: a machine learning-based virtual screening approach integrating pharmacophores, docking, and molecular descriptors.\",\"authors\":\"Lei Jia, Lei Xu, Yanfei Cai, Yun Chen, Jian Jin, Li Yu, Jingyu Zhu\",\"doi\":\"10.1007/s11030-025-11216-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>PI3Kγ is a lipid kinase that is expressed primarily in leukocytes and plays a significant role in tumors, inflammation, and autoimmune diseases. Consequently, considerable attention has been given to the development of pharmacological inhibitors of PI3Kγ. Recently, machine learning-based virtual screening approaches have been increasingly applied in new drug discovery research, potentially providing innovative strategies for the development of PI3Kγ inhibitors. Thus, in this study, we developed a naïve Bayesian classification (NBC) model that integrates molecular descriptors, molecular fingerprints, molecular docking, and pharmacophore models for virtual screening of the PI3Kγ protein. The validation results indicated that the optimal model demonstrated significant potential for differentiating between active and inactive compounds, as well as a reliable ability to identify true PI3Kγ inhibitors with defined biological activity. Additionally, the optimal NBC model provided favorable and unfavorable fragments for PI3Kγ inhibitors, which will help guide the design and discovery of novel PI3Kγ inhibitors. Finally, the optimal NBC model was employed to perform virtual screening on the ChEMBL database, resulting in the identification of several compounds with high potential as PI3Kγ inhibitors. We anticipate that the developed machine learning-based virtual screening approach will offer valuable insights and guidance for the development of novel PI3Kγ inhibitors.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11216-4\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11216-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Enhancing PI3Kγ inhibitor discovery: a machine learning-based virtual screening approach integrating pharmacophores, docking, and molecular descriptors.
PI3Kγ is a lipid kinase that is expressed primarily in leukocytes and plays a significant role in tumors, inflammation, and autoimmune diseases. Consequently, considerable attention has been given to the development of pharmacological inhibitors of PI3Kγ. Recently, machine learning-based virtual screening approaches have been increasingly applied in new drug discovery research, potentially providing innovative strategies for the development of PI3Kγ inhibitors. Thus, in this study, we developed a naïve Bayesian classification (NBC) model that integrates molecular descriptors, molecular fingerprints, molecular docking, and pharmacophore models for virtual screening of the PI3Kγ protein. The validation results indicated that the optimal model demonstrated significant potential for differentiating between active and inactive compounds, as well as a reliable ability to identify true PI3Kγ inhibitors with defined biological activity. Additionally, the optimal NBC model provided favorable and unfavorable fragments for PI3Kγ inhibitors, which will help guide the design and discovery of novel PI3Kγ inhibitors. Finally, the optimal NBC model was employed to perform virtual screening on the ChEMBL database, resulting in the identification of several compounds with high potential as PI3Kγ inhibitors. We anticipate that the developed machine learning-based virtual screening approach will offer valuable insights and guidance for the development of novel PI3Kγ inhibitors.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;