阐明钠-葡萄糖转运蛋白2抑制剂介导的遗传和免疫途径降低痛风风险:一项两步孟德尔随机研究

IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS
Huiqiong Zeng, Zebo Cai, Junda Lai, Zhijun Chen, Wei Liu, Ye Zhang
{"title":"阐明钠-葡萄糖转运蛋白2抑制剂介导的遗传和免疫途径降低痛风风险:一项两步孟德尔随机研究","authors":"Huiqiong Zeng, Zebo Cai, Junda Lai, Zhijun Chen, Wei Liu, Ye Zhang","doi":"10.1089/adt.2024.137","DOIUrl":null,"url":null,"abstract":"<p><p>\n <i>While sodium-glucose transporter 2 inhibitors (SGLT2i) demonstrate urate-lowering effects, their causal role in Gout prevention remains controversial. This study employs advanced Mendelian randomization (MR) techniques to dissect immune-mediated mechanisms underlying this relationship. Using bidirectional two-sample MR and mediation analysis, we analyzed genetic instrument variables for SGLT2i (10 single-nucleotide polymorphisms, F-statistic >20), Gout risk (6,810 cases/477,788 controls), and 731 immune cell phenotypes. Pleiotropy and heterogeneity were also assessed to ensure robustness. The study confirmed a significant indirect effect of SGLT2i, which exhibited a 2.6% reduced Gout risk (Odds Ratio [OR]: 0.9738, 95% confidence interval [CI] = 0.9623, 0.9854, P = 1.12e-05). Thirty-five immune cell phenotypes were identified as significantly affecting Gout development, with key phenotypes such as CD86 on myeloid Dendritic cell (DC) (OR: 0.9966; 95% CI = 0.9930, 0.9995), contributing to 12.8% of the overall mediation effect. No evidence of heterogeneity or pleiotropy was detected and reverse-direction MR corroborated these findings. Our study first established SGLT2i as Gout-protective agents through DC-mediated immunomodulation, offering mechanistic insights for targeted prevention strategies in clinical practice.</i>\n </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating Genetic and Immunological Pathways Mediated by Sodium-Glucose Transporter 2 Inhibitors in Reducing Gout Risk: A Two-Step Mendelian Randomization Study.\",\"authors\":\"Huiqiong Zeng, Zebo Cai, Junda Lai, Zhijun Chen, Wei Liu, Ye Zhang\",\"doi\":\"10.1089/adt.2024.137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>\\n <i>While sodium-glucose transporter 2 inhibitors (SGLT2i) demonstrate urate-lowering effects, their causal role in Gout prevention remains controversial. This study employs advanced Mendelian randomization (MR) techniques to dissect immune-mediated mechanisms underlying this relationship. Using bidirectional two-sample MR and mediation analysis, we analyzed genetic instrument variables for SGLT2i (10 single-nucleotide polymorphisms, F-statistic >20), Gout risk (6,810 cases/477,788 controls), and 731 immune cell phenotypes. Pleiotropy and heterogeneity were also assessed to ensure robustness. The study confirmed a significant indirect effect of SGLT2i, which exhibited a 2.6% reduced Gout risk (Odds Ratio [OR]: 0.9738, 95% confidence interval [CI] = 0.9623, 0.9854, P = 1.12e-05). Thirty-five immune cell phenotypes were identified as significantly affecting Gout development, with key phenotypes such as CD86 on myeloid Dendritic cell (DC) (OR: 0.9966; 95% CI = 0.9930, 0.9995), contributing to 12.8% of the overall mediation effect. No evidence of heterogeneity or pleiotropy was detected and reverse-direction MR corroborated these findings. Our study first established SGLT2i as Gout-protective agents through DC-mediated immunomodulation, offering mechanistic insights for targeted prevention strategies in clinical practice.</i>\\n </p>\",\"PeriodicalId\":8586,\"journal\":{\"name\":\"Assay and drug development technologies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Assay and drug development technologies\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/adt.2024.137\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2024.137","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

虽然钠-葡萄糖转运蛋白2抑制剂(SGLT2i)具有降低尿酸的作用,但其在痛风预防中的因果作用仍存在争议。本研究采用先进的孟德尔随机化(MR)技术来剖析这种关系背后的免疫介导机制。通过双向双样本MR和中介分析,我们分析了SGLT2i(10个单核苷酸多态性,f统计值bbb20)、痛风风险(6,810例/477,788例对照)和731种免疫细胞表型的遗传工具变量。还评估了多效性和异质性以确保稳健性。该研究证实SGLT2i具有显著的间接作用,可使痛风风险降低2.6%(优势比[OR]: 0.9738, 95%可信区间[CI] = 0.9623, 0.9854, P = 1.12e-05)。35种免疫细胞表型被确定为显著影响痛风发展,关键表型如CD86对髓样树突状细胞(DC) (OR: 0.9966;95% CI = 0.9930, 0.9995),占整体中介效应的12.8%。没有发现异质性或多效性的证据,反向磁共振证实了这些发现。我们的研究首次通过dc介导的免疫调节确立了SGLT2i作为痛风保护剂的作用,为临床实践中有针对性的预防策略提供了机制见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elucidating Genetic and Immunological Pathways Mediated by Sodium-Glucose Transporter 2 Inhibitors in Reducing Gout Risk: A Two-Step Mendelian Randomization Study.

While sodium-glucose transporter 2 inhibitors (SGLT2i) demonstrate urate-lowering effects, their causal role in Gout prevention remains controversial. This study employs advanced Mendelian randomization (MR) techniques to dissect immune-mediated mechanisms underlying this relationship. Using bidirectional two-sample MR and mediation analysis, we analyzed genetic instrument variables for SGLT2i (10 single-nucleotide polymorphisms, F-statistic >20), Gout risk (6,810 cases/477,788 controls), and 731 immune cell phenotypes. Pleiotropy and heterogeneity were also assessed to ensure robustness. The study confirmed a significant indirect effect of SGLT2i, which exhibited a 2.6% reduced Gout risk (Odds Ratio [OR]: 0.9738, 95% confidence interval [CI] = 0.9623, 0.9854, P = 1.12e-05). Thirty-five immune cell phenotypes were identified as significantly affecting Gout development, with key phenotypes such as CD86 on myeloid Dendritic cell (DC) (OR: 0.9966; 95% CI = 0.9930, 0.9995), contributing to 12.8% of the overall mediation effect. No evidence of heterogeneity or pleiotropy was detected and reverse-direction MR corroborated these findings. Our study first established SGLT2i as Gout-protective agents through DC-mediated immunomodulation, offering mechanistic insights for targeted prevention strategies in clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Assay and drug development technologies
Assay and drug development technologies 医学-生化研究方法
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application. ASSAY and Drug Development Technologies coverage includes: -Assay design, target development, and high-throughput technologies- Hit to Lead optimization and medicinal chemistry through preclinical candidate selection- Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis- Approaches to assays configured for gene families, inherited, and infectious diseases- Assays and strategies for adapting model organisms to drug discovery- The use of stem cells as models of disease- Translation of phenotypic outputs to target identification- Exploration and mechanistic studies of the technical basis for assay and screening artifacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信