基于纳米比特的犬SOD1蛋白动力学分析:了解CCS和Ebselen衍生物作为犬退行性脊髓病潜在治疗药物的作用。

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sakura Hirose, Yui Kobatake, Norihiro Tada, Mahmoud Kandeel, Akichika Itoh, Kentaro Oh-Hashi
{"title":"基于纳米比特的犬SOD1蛋白动力学分析:了解CCS和Ebselen衍生物作为犬退行性脊髓病潜在治疗药物的作用。","authors":"Sakura Hirose, Yui Kobatake, Norihiro Tada, Mahmoud Kandeel, Akichika Itoh, Kentaro Oh-Hashi","doi":"10.1007/s12013-025-01768-5","DOIUrl":null,"url":null,"abstract":"<p><p>Canine degenerative myelopathy (DM) is a progressive neurodegenerative disorder that shares common pathological features with amyotrophic lateral sclerosis (ALS) in humans. Both diseases are linked to mutations in the superoxide dismutase 1 (SOD1) gene. Understanding the molecular differences between wild-type (WT) and mutant SOD1 proteins is critical for developing therapeutic strategies. In this study, we employed the NanoLuc complementation (NanoBiT) reporter system to investigate the expression and functional differences between WT and E40K mutant canine SOD1 to assess the therapeutic potential of copper chaperone for SOD1 (CCS) and ebselen derivatives. E40K cSOD1 displayed significantly reduced luciferase activity compared to WT cSOD1 in all NanoBiT-tagged combinations, indicating altered homodimerization and protein stability. Co-transfection with CCS increased both WT and mutant cSOD1 protein levels and reporter activities, with a more pronounced effect on the E40K mutant. Ebselen treatment enhanced luciferase activity, particularly in E40K cSOD1-expressing cells. Two compounds (compounds 2 and 5) were stronger than the parent compound in improving mutant cSOD1-derived NanoBiT activities. Additionally, molecular docking simulations revealed stronger binding affinities of ebselen and its derivatives to E40K cSOD1, suggesting potential therapeutic benefits. In conclusion, the NanoLuc reporter system offers a valuable tool for screening potential therapeutics for SOD1-linked neurodegenerative diseases. CCS and ebselen derivatives exhibited promising effects on SOD1 activity, providing a basis for future therapeutic strategies targeting both DM and ALS.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NanoBiT-based Analysis of Canine SOD1 Protein Dynamics: Understanding the Role of CCS and Ebselen Derivatives as Potential Therapeutics for Canine Degenerative Myelopathy.\",\"authors\":\"Sakura Hirose, Yui Kobatake, Norihiro Tada, Mahmoud Kandeel, Akichika Itoh, Kentaro Oh-Hashi\",\"doi\":\"10.1007/s12013-025-01768-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Canine degenerative myelopathy (DM) is a progressive neurodegenerative disorder that shares common pathological features with amyotrophic lateral sclerosis (ALS) in humans. Both diseases are linked to mutations in the superoxide dismutase 1 (SOD1) gene. Understanding the molecular differences between wild-type (WT) and mutant SOD1 proteins is critical for developing therapeutic strategies. In this study, we employed the NanoLuc complementation (NanoBiT) reporter system to investigate the expression and functional differences between WT and E40K mutant canine SOD1 to assess the therapeutic potential of copper chaperone for SOD1 (CCS) and ebselen derivatives. E40K cSOD1 displayed significantly reduced luciferase activity compared to WT cSOD1 in all NanoBiT-tagged combinations, indicating altered homodimerization and protein stability. Co-transfection with CCS increased both WT and mutant cSOD1 protein levels and reporter activities, with a more pronounced effect on the E40K mutant. Ebselen treatment enhanced luciferase activity, particularly in E40K cSOD1-expressing cells. Two compounds (compounds 2 and 5) were stronger than the parent compound in improving mutant cSOD1-derived NanoBiT activities. Additionally, molecular docking simulations revealed stronger binding affinities of ebselen and its derivatives to E40K cSOD1, suggesting potential therapeutic benefits. In conclusion, the NanoLuc reporter system offers a valuable tool for screening potential therapeutics for SOD1-linked neurodegenerative diseases. CCS and ebselen derivatives exhibited promising effects on SOD1 activity, providing a basis for future therapeutic strategies targeting both DM and ALS.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-025-01768-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01768-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

犬退行性脊髓病(DM)是一种进行性神经退行性疾病,与人类肌萎缩侧索硬化症(ALS)具有共同的病理特征。这两种疾病都与超氧化物歧化酶1 (SOD1)基因突变有关。了解野生型(WT)和突变型SOD1蛋白之间的分子差异对于制定治疗策略至关重要。在这项研究中,我们利用NanoLuc互补(NanoBiT)报告系统研究了WT和E40K突变犬SOD1的表达和功能差异,以评估铜伴侣对SOD1 (CCS)和ebselen衍生物的治疗潜力。与WT cSOD1相比,E40K cSOD1在所有nanobit标记的组合中显示出显著降低的荧光素酶活性,表明同型二聚化和蛋白质稳定性发生了变化。CCS共转染增加了WT和突变体cSOD1蛋白水平和报告活性,对E40K突变体的影响更为明显。Ebselen处理增强了荧光素酶活性,特别是在表达E40K csod1的细胞中。两个化合物(化合物2和5)在提高突变体csod1衍生的NanoBiT活性方面强于亲本化合物。此外,分子对接模拟显示,依布selen及其衍生物与E40K cSOD1具有较强的结合亲和力,表明其具有潜在的治疗益处。总之,NanoLuc报告系统为筛选sod1相关神经退行性疾病的潜在治疗方法提供了一个有价值的工具。CCS和依布selen衍生物对SOD1活性有良好的影响,为未来针对DM和ALS的治疗策略提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NanoBiT-based Analysis of Canine SOD1 Protein Dynamics: Understanding the Role of CCS and Ebselen Derivatives as Potential Therapeutics for Canine Degenerative Myelopathy.

Canine degenerative myelopathy (DM) is a progressive neurodegenerative disorder that shares common pathological features with amyotrophic lateral sclerosis (ALS) in humans. Both diseases are linked to mutations in the superoxide dismutase 1 (SOD1) gene. Understanding the molecular differences between wild-type (WT) and mutant SOD1 proteins is critical for developing therapeutic strategies. In this study, we employed the NanoLuc complementation (NanoBiT) reporter system to investigate the expression and functional differences between WT and E40K mutant canine SOD1 to assess the therapeutic potential of copper chaperone for SOD1 (CCS) and ebselen derivatives. E40K cSOD1 displayed significantly reduced luciferase activity compared to WT cSOD1 in all NanoBiT-tagged combinations, indicating altered homodimerization and protein stability. Co-transfection with CCS increased both WT and mutant cSOD1 protein levels and reporter activities, with a more pronounced effect on the E40K mutant. Ebselen treatment enhanced luciferase activity, particularly in E40K cSOD1-expressing cells. Two compounds (compounds 2 and 5) were stronger than the parent compound in improving mutant cSOD1-derived NanoBiT activities. Additionally, molecular docking simulations revealed stronger binding affinities of ebselen and its derivatives to E40K cSOD1, suggesting potential therapeutic benefits. In conclusion, the NanoLuc reporter system offers a valuable tool for screening potential therapeutics for SOD1-linked neurodegenerative diseases. CCS and ebselen derivatives exhibited promising effects on SOD1 activity, providing a basis for future therapeutic strategies targeting both DM and ALS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信