Gabriella Iula, Antonella Miglione, Panagiota M Kalligosfyri, Michele Spinelli, Angela Amoresano, Concetta Di Natale, Ibrahim A Darwish, Stefano Cinti
{"title":"使用纸质流体和3d打印柔性可穿戴生物传感器对汗液乳酸进行身体电化学测量。","authors":"Gabriella Iula, Antonella Miglione, Panagiota M Kalligosfyri, Michele Spinelli, Angela Amoresano, Concetta Di Natale, Ibrahim A Darwish, Stefano Cinti","doi":"10.1007/s00216-025-05905-0","DOIUrl":null,"url":null,"abstract":"<p><p>Real-time monitoring of sweat lactate provides valuable physiological insights for assessing exercise outcomes and athletic performance. Conventional lactate detection methods, while sensitive, often lack portability and real-time capability for use in wearable or in-body applications. To address these limitations, electrochemical biosensing has emerged as a leading approach, enabling non-invasive and real-time analysis. Wearable devices which integrate lactate-specific enzymes with electrochemical transducers might provide efficient solutions for continuous monitoring. In this study, a wearable lactate biosensor was developed using custom screen-printed electrodes modified with a bio-hybrid probe comprising Prussian blue, carbon black, and lactate oxidase. All the key experimental parameters were optimized, and a detection limit of 60 µM and a linearity up to 20 mM were obtained. A filter paper-based strip was incorporated to enhance sweat collection and serve as the real sample collector by exploiting its porosity: this configuration allowed a satisfactory repeatability of 6%. The system was validated using real sweat samples, highlighting a quantitative correlation (94-103%) with LC-MS/MS measurements. The biosensor was integrated onto a 3D-printed thermoplastic polyurethane (TPU) armband, designed for a customizable and comfortable fit, ensuring effective sweat collection and transport. This low-cost, wearable system represents a significant step forward in non-invasive, continuous, and personalized health monitoring, providing a practical tool for tracking physiological parameters in real-time.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-body electrochemical measurement of sweat lactate with the use of paper-based fluidics and 3D-printed flexible wearable biosensor.\",\"authors\":\"Gabriella Iula, Antonella Miglione, Panagiota M Kalligosfyri, Michele Spinelli, Angela Amoresano, Concetta Di Natale, Ibrahim A Darwish, Stefano Cinti\",\"doi\":\"10.1007/s00216-025-05905-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Real-time monitoring of sweat lactate provides valuable physiological insights for assessing exercise outcomes and athletic performance. Conventional lactate detection methods, while sensitive, often lack portability and real-time capability for use in wearable or in-body applications. To address these limitations, electrochemical biosensing has emerged as a leading approach, enabling non-invasive and real-time analysis. Wearable devices which integrate lactate-specific enzymes with electrochemical transducers might provide efficient solutions for continuous monitoring. In this study, a wearable lactate biosensor was developed using custom screen-printed electrodes modified with a bio-hybrid probe comprising Prussian blue, carbon black, and lactate oxidase. All the key experimental parameters were optimized, and a detection limit of 60 µM and a linearity up to 20 mM were obtained. A filter paper-based strip was incorporated to enhance sweat collection and serve as the real sample collector by exploiting its porosity: this configuration allowed a satisfactory repeatability of 6%. The system was validated using real sweat samples, highlighting a quantitative correlation (94-103%) with LC-MS/MS measurements. The biosensor was integrated onto a 3D-printed thermoplastic polyurethane (TPU) armband, designed for a customizable and comfortable fit, ensuring effective sweat collection and transport. This low-cost, wearable system represents a significant step forward in non-invasive, continuous, and personalized health monitoring, providing a practical tool for tracking physiological parameters in real-time.</p>\",\"PeriodicalId\":462,\"journal\":{\"name\":\"Analytical and Bioanalytical Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical and Bioanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00216-025-05905-0\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-05905-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
On-body electrochemical measurement of sweat lactate with the use of paper-based fluidics and 3D-printed flexible wearable biosensor.
Real-time monitoring of sweat lactate provides valuable physiological insights for assessing exercise outcomes and athletic performance. Conventional lactate detection methods, while sensitive, often lack portability and real-time capability for use in wearable or in-body applications. To address these limitations, electrochemical biosensing has emerged as a leading approach, enabling non-invasive and real-time analysis. Wearable devices which integrate lactate-specific enzymes with electrochemical transducers might provide efficient solutions for continuous monitoring. In this study, a wearable lactate biosensor was developed using custom screen-printed electrodes modified with a bio-hybrid probe comprising Prussian blue, carbon black, and lactate oxidase. All the key experimental parameters were optimized, and a detection limit of 60 µM and a linearity up to 20 mM were obtained. A filter paper-based strip was incorporated to enhance sweat collection and serve as the real sample collector by exploiting its porosity: this configuration allowed a satisfactory repeatability of 6%. The system was validated using real sweat samples, highlighting a quantitative correlation (94-103%) with LC-MS/MS measurements. The biosensor was integrated onto a 3D-printed thermoplastic polyurethane (TPU) armband, designed for a customizable and comfortable fit, ensuring effective sweat collection and transport. This low-cost, wearable system represents a significant step forward in non-invasive, continuous, and personalized health monitoring, providing a practical tool for tracking physiological parameters in real-time.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.