释放中医药的潜力:利用CSLN和分子动力学发现药物靶点的计算方法。

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED
Qi Geng, Pengcheng Zhao, Zhiwen Cao, Zhenyi Wu, Changqi Shi, Lulu Zhang, Lan Yan, Xiaomeng Zhang, Peipei Lu, Jianyu Shi, Cheng Lu
{"title":"释放中医药的潜力:利用CSLN和分子动力学发现药物靶点的计算方法。","authors":"Qi Geng, Pengcheng Zhao, Zhiwen Cao, Zhenyi Wu, Changqi Shi, Lulu Zhang, Lan Yan, Xiaomeng Zhang, Peipei Lu, Jianyu Shi, Cheng Lu","doi":"10.1007/s11030-025-11177-8","DOIUrl":null,"url":null,"abstract":"<p><p>The diverse chemical components of traditional Chinese medicine (TCM) exhibit significant therapeutic potential; however, the action mechanisms of these compounds often remain unclear. The use of drug-target prediction can aid in identifying the specific targets of TCM, thereby revealing their bioactivity and mechanisms. The efficiency, cost-effectiveness, and powerful predictive capabilities of artificial intelligence algorithms have led to their emergence as effective tools for accelerating drug-target interaction analysis. To systematically investigate TCM interaction mechanisms, we integrated cosine‑correlation and similarity‑comparison of local network (CSLN) and molecular dynamics (MD) simulations. The CSLN algorithm predicts that 11-beta-hydroxysteroid dehydrogenase-1 (HSD11B1) serves as a common target for the synergistic effects of triptolide (TP) and glycyrrhizic acid (GA). MD simulations indicate that both TP and GA can maintain stable interactions with HSD11B1 and form a common binding hot region. Surface plasmon resonance (SPR) experiments reveal that both TP and GA can effectively bind to HSD11B1, with binding constants of 29.21 μM and 31.75 μM, respectively. When used in combination, the binding constant is 5.74 μM. The combination of CSLN and MD simulations represents an effective tool for the initial analysis and simulation of interaction patterns between TCM and their targets at the computational level. These findings enhance our understanding of the interaction mechanisms between drugs.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unleashing the potential of traditional Chinese medicine: a computational approach to discovering drug targets utilizing the CSLN and molecular dynamics.\",\"authors\":\"Qi Geng, Pengcheng Zhao, Zhiwen Cao, Zhenyi Wu, Changqi Shi, Lulu Zhang, Lan Yan, Xiaomeng Zhang, Peipei Lu, Jianyu Shi, Cheng Lu\",\"doi\":\"10.1007/s11030-025-11177-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The diverse chemical components of traditional Chinese medicine (TCM) exhibit significant therapeutic potential; however, the action mechanisms of these compounds often remain unclear. The use of drug-target prediction can aid in identifying the specific targets of TCM, thereby revealing their bioactivity and mechanisms. The efficiency, cost-effectiveness, and powerful predictive capabilities of artificial intelligence algorithms have led to their emergence as effective tools for accelerating drug-target interaction analysis. To systematically investigate TCM interaction mechanisms, we integrated cosine‑correlation and similarity‑comparison of local network (CSLN) and molecular dynamics (MD) simulations. The CSLN algorithm predicts that 11-beta-hydroxysteroid dehydrogenase-1 (HSD11B1) serves as a common target for the synergistic effects of triptolide (TP) and glycyrrhizic acid (GA). MD simulations indicate that both TP and GA can maintain stable interactions with HSD11B1 and form a common binding hot region. Surface plasmon resonance (SPR) experiments reveal that both TP and GA can effectively bind to HSD11B1, with binding constants of 29.21 μM and 31.75 μM, respectively. When used in combination, the binding constant is 5.74 μM. The combination of CSLN and MD simulations represents an effective tool for the initial analysis and simulation of interaction patterns between TCM and their targets at the computational level. These findings enhance our understanding of the interaction mechanisms between drugs.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11177-8\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11177-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

中药化学成分的多样性显示出显著的治疗潜力;然而,这些化合物的作用机制往往仍不清楚。利用药物靶点预测技术可以识别中药的特异性靶点,从而揭示其生物活性和作用机制。人工智能算法的效率、成本效益和强大的预测能力使其成为加速药物-靶点相互作用分析的有效工具。为了系统地研究中药相互作用机制,我们将余弦相关和相似比较的局部网络(CSLN)和分子动力学(MD)模拟相结合。CSLN算法预测,11- β -羟基类固醇脱氢酶-1 (HSD11B1)是雷公藤甲素(TP)和甘草酸(GA)协同作用的共同靶点。MD模拟表明,TP和GA均能与HSD11B1保持稳定的相互作用,并形成共同的结合热区。表面等离子体共振(SPR)实验表明,TP和GA均能有效结合HSD11B1,结合常数分别为29.21 μM和31.75 μM。组合使用时,结合常数为5.74 μM。CSLN和MD模拟的结合为中医与靶标之间的相互作用模式在计算层面的初步分析和模拟提供了有效的工具。这些发现增强了我们对药物间相互作用机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unleashing the potential of traditional Chinese medicine: a computational approach to discovering drug targets utilizing the CSLN and molecular dynamics.

The diverse chemical components of traditional Chinese medicine (TCM) exhibit significant therapeutic potential; however, the action mechanisms of these compounds often remain unclear. The use of drug-target prediction can aid in identifying the specific targets of TCM, thereby revealing their bioactivity and mechanisms. The efficiency, cost-effectiveness, and powerful predictive capabilities of artificial intelligence algorithms have led to their emergence as effective tools for accelerating drug-target interaction analysis. To systematically investigate TCM interaction mechanisms, we integrated cosine‑correlation and similarity‑comparison of local network (CSLN) and molecular dynamics (MD) simulations. The CSLN algorithm predicts that 11-beta-hydroxysteroid dehydrogenase-1 (HSD11B1) serves as a common target for the synergistic effects of triptolide (TP) and glycyrrhizic acid (GA). MD simulations indicate that both TP and GA can maintain stable interactions with HSD11B1 and form a common binding hot region. Surface plasmon resonance (SPR) experiments reveal that both TP and GA can effectively bind to HSD11B1, with binding constants of 29.21 μM and 31.75 μM, respectively. When used in combination, the binding constant is 5.74 μM. The combination of CSLN and MD simulations represents an effective tool for the initial analysis and simulation of interaction patterns between TCM and their targets at the computational level. These findings enhance our understanding of the interaction mechanisms between drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信