小鼠中Asxl1缺失通过调节神经干细胞存活导致小头畸形。

IF 3.2 2区 生物学 Q3 CELL BIOLOGY
Animal Cells and Systems Pub Date : 2025-04-23 eCollection Date: 2025-01-01 DOI:10.1080/19768354.2025.2481979
Hyeju Kim, A-Reum Kim, Sukyoung Byun, Soo-Jong Um
{"title":"小鼠中Asxl1缺失通过调节神经干细胞存活导致小头畸形。","authors":"Hyeju Kim, A-Reum Kim, Sukyoung Byun, Soo-Jong Um","doi":"10.1080/19768354.2025.2481979","DOIUrl":null,"url":null,"abstract":"<p><p>Additional sex comb-like 1 (ASXL1) is a chromatin-associated factor essential for transcriptional regulation. De novo truncating mutations in the <i>ASXL1</i> gene are linked to Bohring-Opitz syndrome, a developmental disorder characterized by microcephaly; however, the role of Asxl1 in brain development remains unclear. In this study, we demonstrate that Asxl1 deletion in mice induces microcephaly, primarily caused by a reduction in the size and number of cortical neurons. Asxl1 ablation disrupts neural stem cell (NSC) maintenance, as evidenced by decreased proliferation and increased apoptosis. Transcriptomic analysis of Asxl1-deficient NSCs revealed 4,635 differentially expressed genes, including 2,262 upregulated and 2,373 downregulated genes. Gene ontology analysis indicated that Asxl1 regulates NSC survival through the histone methyltransferase Ezh2, a core component of the Polycomb Repressive Complex 2 (PRC2). Inhibition of H3K27me3 using GSK343 significantly reduced the viability of wild-type NSCs, but had a markedly diminished effect on Asxl1-deficient NSCs. Furthermore, Ezh2 target genes associated with apoptosis, such as <i>Epha7</i> and <i>Osr1</i>, were upregulated in wild-type NSCs following GSK343 treatment but not significantly affected in Asxl1-deficient NSCs. These findings establish Asxl1 as a critical regulator of NSC survival and neurogenesis via Ezh2-mediated chromatin modification and provide insights into the mechanisms underlying microcephaly in developmental disorders.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"29 1","pages":"241-250"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020147/pdf/","citationCount":"0","resultStr":"{\"title\":\"Asxl1 loss in mice leads to microcephaly by regulating neural stem cell survival.\",\"authors\":\"Hyeju Kim, A-Reum Kim, Sukyoung Byun, Soo-Jong Um\",\"doi\":\"10.1080/19768354.2025.2481979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Additional sex comb-like 1 (ASXL1) is a chromatin-associated factor essential for transcriptional regulation. De novo truncating mutations in the <i>ASXL1</i> gene are linked to Bohring-Opitz syndrome, a developmental disorder characterized by microcephaly; however, the role of Asxl1 in brain development remains unclear. In this study, we demonstrate that Asxl1 deletion in mice induces microcephaly, primarily caused by a reduction in the size and number of cortical neurons. Asxl1 ablation disrupts neural stem cell (NSC) maintenance, as evidenced by decreased proliferation and increased apoptosis. Transcriptomic analysis of Asxl1-deficient NSCs revealed 4,635 differentially expressed genes, including 2,262 upregulated and 2,373 downregulated genes. Gene ontology analysis indicated that Asxl1 regulates NSC survival through the histone methyltransferase Ezh2, a core component of the Polycomb Repressive Complex 2 (PRC2). Inhibition of H3K27me3 using GSK343 significantly reduced the viability of wild-type NSCs, but had a markedly diminished effect on Asxl1-deficient NSCs. Furthermore, Ezh2 target genes associated with apoptosis, such as <i>Epha7</i> and <i>Osr1</i>, were upregulated in wild-type NSCs following GSK343 treatment but not significantly affected in Asxl1-deficient NSCs. These findings establish Asxl1 as a critical regulator of NSC survival and neurogenesis via Ezh2-mediated chromatin modification and provide insights into the mechanisms underlying microcephaly in developmental disorders.</p>\",\"PeriodicalId\":7804,\"journal\":{\"name\":\"Animal Cells and Systems\",\"volume\":\"29 1\",\"pages\":\"241-250\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020147/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Cells and Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/19768354.2025.2481979\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Cells and Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19768354.2025.2481979","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

附加性梳状蛋白1 (ASXL1)是一种染色质相关因子,对转录调控至关重要。ASXL1基因的从头截断突变与bohling - opitz综合征(一种以小头畸形为特征的发育障碍)有关;然而,Asxl1在大脑发育中的作用仍不清楚。在这项研究中,我们证明了Asxl1缺失在小鼠中诱导小头畸形,主要是由皮质神经元的大小和数量减少引起的。Asxl1消融破坏神经干细胞(NSC)的维持,增殖减少和凋亡增加就是证据。对asxl1缺失的NSCs进行转录组学分析,发现了4635个差异表达基因,包括2262个上调基因和2373个下调基因。基因本体分析表明,Asxl1通过组蛋白甲基转移酶Ezh2调控NSC存活,Ezh2是Polycomb suppressuppressicomplex 2 (PRC2)的核心成分。使用GSK343抑制H3K27me3显著降低了野生型NSCs的活力,但对asxl1缺陷的NSCs的影响明显减弱。此外,与凋亡相关的Ezh2靶基因,如Epha7和Osr1,在GSK343治疗后,在野生型NSCs中上调,但在asxl1缺陷的NSCs中没有显著影响。这些发现表明Asxl1是通过ezh2介导的染色质修饰介导NSC存活和神经发生的关键调节因子,并为发育障碍小头畸形的潜在机制提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Asxl1 loss in mice leads to microcephaly by regulating neural stem cell survival.

Asxl1 loss in mice leads to microcephaly by regulating neural stem cell survival.

Asxl1 loss in mice leads to microcephaly by regulating neural stem cell survival.

Asxl1 loss in mice leads to microcephaly by regulating neural stem cell survival.

Additional sex comb-like 1 (ASXL1) is a chromatin-associated factor essential for transcriptional regulation. De novo truncating mutations in the ASXL1 gene are linked to Bohring-Opitz syndrome, a developmental disorder characterized by microcephaly; however, the role of Asxl1 in brain development remains unclear. In this study, we demonstrate that Asxl1 deletion in mice induces microcephaly, primarily caused by a reduction in the size and number of cortical neurons. Asxl1 ablation disrupts neural stem cell (NSC) maintenance, as evidenced by decreased proliferation and increased apoptosis. Transcriptomic analysis of Asxl1-deficient NSCs revealed 4,635 differentially expressed genes, including 2,262 upregulated and 2,373 downregulated genes. Gene ontology analysis indicated that Asxl1 regulates NSC survival through the histone methyltransferase Ezh2, a core component of the Polycomb Repressive Complex 2 (PRC2). Inhibition of H3K27me3 using GSK343 significantly reduced the viability of wild-type NSCs, but had a markedly diminished effect on Asxl1-deficient NSCs. Furthermore, Ezh2 target genes associated with apoptosis, such as Epha7 and Osr1, were upregulated in wild-type NSCs following GSK343 treatment but not significantly affected in Asxl1-deficient NSCs. These findings establish Asxl1 as a critical regulator of NSC survival and neurogenesis via Ezh2-mediated chromatin modification and provide insights into the mechanisms underlying microcephaly in developmental disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Animal Cells and Systems
Animal Cells and Systems 生物-动物学
CiteScore
4.50
自引率
24.10%
发文量
33
审稿时长
6 months
期刊介绍: Animal Cells and Systems is the official journal of the Korean Society for Integrative Biology. This international, peer-reviewed journal publishes original papers that cover diverse aspects of biological sciences including Bioinformatics and Systems Biology, Developmental Biology, Evolution and Systematic Biology, Population Biology, & Animal Behaviour, Molecular and Cellular Biology, Neurobiology and Immunology, and Translational Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信