以香叶醇为透皮渗透促进剂的大黄素负载贴剂的研制。

IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS
Suhas Shivaji Siddheshwar, Sandhya Jadhav, Someshwar Dattatraya Mankar, Arti Changdev Ghorpade
{"title":"以香叶醇为透皮渗透促进剂的大黄素负载贴剂的研制。","authors":"Suhas Shivaji Siddheshwar, Sandhya Jadhav, Someshwar Dattatraya Mankar, Arti Changdev Ghorpade","doi":"10.1089/adt.2025.010","DOIUrl":null,"url":null,"abstract":"<p><p>\n <i>Diabetes management necessitates innovative approaches to enhance treatment efficacy and patient adherence. The study aimed to develop a transdermal patch loaded with emodin, hypothesized to provide a noninvasive treatment option that circumvents complications of oral administration. To optimize the formulation, a full factorial experimental design was employed, focusing on the concentrations of hydroxypropyl methylcellulose K15 and geraniol. Compatibility and mechanical characteristics were investigated using Fourier-transform infrared spectroscopy and differential scanning calorimetry. The patch's drug release profile was assessed via <i>in vitro</i> studies, while its stability was tested under accelerated conditions. The antidiabetic efficacy was evaluated in diabetic rats using an <i>in vivo</i> model. The optimized patch (batch SF7) released 94.57% of the drug over 12 h. Under accelerated stability conditions, the patch showed a minor decline in folding endurance from 396 ± 1.50 to 369 ± 2.63 folds and drug content uniformity from 98.70% ± 0.02% to 98.14% ± 0.23%. The <i>in vivo</i> antidiabetic study demonstrated a considerable decrease in blood glucose levels in SF7-treated rats from 245.83 ± 3.25 mg/dL to 120.86 ± 4.24 mg/dL over 12 h (<i>p</i>-value < 0.001), comparable with the standard drug glibenclamide. The emodin-loaded transdermal patch displayed consistent drug release, maintained stability, and demonstrated significant antidiabetic activity, suggesting that it is a promising noninvasive therapy for diabetes management.</i>\n </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Fabrication of Emodin-Loaded Patches Using Geraniol as a Penetration Enhancer for Transdermal Delivery.\",\"authors\":\"Suhas Shivaji Siddheshwar, Sandhya Jadhav, Someshwar Dattatraya Mankar, Arti Changdev Ghorpade\",\"doi\":\"10.1089/adt.2025.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>\\n <i>Diabetes management necessitates innovative approaches to enhance treatment efficacy and patient adherence. The study aimed to develop a transdermal patch loaded with emodin, hypothesized to provide a noninvasive treatment option that circumvents complications of oral administration. To optimize the formulation, a full factorial experimental design was employed, focusing on the concentrations of hydroxypropyl methylcellulose K15 and geraniol. Compatibility and mechanical characteristics were investigated using Fourier-transform infrared spectroscopy and differential scanning calorimetry. The patch's drug release profile was assessed via <i>in vitro</i> studies, while its stability was tested under accelerated conditions. The antidiabetic efficacy was evaluated in diabetic rats using an <i>in vivo</i> model. The optimized patch (batch SF7) released 94.57% of the drug over 12 h. Under accelerated stability conditions, the patch showed a minor decline in folding endurance from 396 ± 1.50 to 369 ± 2.63 folds and drug content uniformity from 98.70% ± 0.02% to 98.14% ± 0.23%. The <i>in vivo</i> antidiabetic study demonstrated a considerable decrease in blood glucose levels in SF7-treated rats from 245.83 ± 3.25 mg/dL to 120.86 ± 4.24 mg/dL over 12 h (<i>p</i>-value < 0.001), comparable with the standard drug glibenclamide. The emodin-loaded transdermal patch displayed consistent drug release, maintained stability, and demonstrated significant antidiabetic activity, suggesting that it is a promising noninvasive therapy for diabetes management.</i>\\n </p>\",\"PeriodicalId\":8586,\"journal\":{\"name\":\"Assay and drug development technologies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Assay and drug development technologies\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/adt.2025.010\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2025.010","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病管理需要创新的方法来提高治疗效果和患者的依从性。该研究旨在开发一种装载大黄素的透皮贴片,假设提供一种无创治疗选择,避免口服给药的并发症。以羟丙基甲基纤维素K15和香叶醇为研究对象,采用全因子实验设计优化配方。采用傅里叶变换红外光谱和差示扫描量热法研究了材料的相容性和力学特性。通过体外研究评估贴片的药物释放特征,同时在加速条件下测试其稳定性。采用体内模型对糖尿病大鼠进行降糖效果评价。优化后的SF7批次贴片在12 h内释药率为94.57%。在加速稳定条件下,贴片的折叠时间由396±1.50次降至369±2.63次,药物含量均匀度由98.70%±0.02%降至98.14%±0.23%。体内抗糖尿病研究表明,sf7治疗大鼠的血糖水平在12小时内从245.83±3.25 mg/dL显著降低到120.86±4.24 mg/dL (p值< 0.001),与标准药物格列本脲相当。装载大黄素的透皮贴片显示出一致的药物释放,保持稳定性,并显示出显著的抗糖尿病活性,这表明它是一种有前途的非侵入性糖尿病治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and Fabrication of Emodin-Loaded Patches Using Geraniol as a Penetration Enhancer for Transdermal Delivery.

Diabetes management necessitates innovative approaches to enhance treatment efficacy and patient adherence. The study aimed to develop a transdermal patch loaded with emodin, hypothesized to provide a noninvasive treatment option that circumvents complications of oral administration. To optimize the formulation, a full factorial experimental design was employed, focusing on the concentrations of hydroxypropyl methylcellulose K15 and geraniol. Compatibility and mechanical characteristics were investigated using Fourier-transform infrared spectroscopy and differential scanning calorimetry. The patch's drug release profile was assessed via in vitro studies, while its stability was tested under accelerated conditions. The antidiabetic efficacy was evaluated in diabetic rats using an in vivo model. The optimized patch (batch SF7) released 94.57% of the drug over 12 h. Under accelerated stability conditions, the patch showed a minor decline in folding endurance from 396 ± 1.50 to 369 ± 2.63 folds and drug content uniformity from 98.70% ± 0.02% to 98.14% ± 0.23%. The in vivo antidiabetic study demonstrated a considerable decrease in blood glucose levels in SF7-treated rats from 245.83 ± 3.25 mg/dL to 120.86 ± 4.24 mg/dL over 12 h (p-value < 0.001), comparable with the standard drug glibenclamide. The emodin-loaded transdermal patch displayed consistent drug release, maintained stability, and demonstrated significant antidiabetic activity, suggesting that it is a promising noninvasive therapy for diabetes management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Assay and drug development technologies
Assay and drug development technologies 医学-生化研究方法
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application. ASSAY and Drug Development Technologies coverage includes: -Assay design, target development, and high-throughput technologies- Hit to Lead optimization and medicinal chemistry through preclinical candidate selection- Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis- Approaches to assays configured for gene families, inherited, and infectious diseases- Assays and strategies for adapting model organisms to drug discovery- The use of stem cells as models of disease- Translation of phenotypic outputs to target identification- Exploration and mechanistic studies of the technical basis for assay and screening artifacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信