作用于RNA的小核糖酶的工程:需要什么才能使新功能与现有催化剂协同工作?

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
ChemBioChem Pub Date : 2025-04-28 DOI:10.1002/cbic.202500213
Constanze Ebermann, Sabine Müller
{"title":"作用于RNA的小核糖酶的工程:需要什么才能使新功能与现有催化剂协同工作?","authors":"Constanze Ebermann, Sabine Müller","doi":"10.1002/cbic.202500213","DOIUrl":null,"url":null,"abstract":"<p><p>The engineering of nucleic acids has been a longstanding objective in research, with the field gaining significant attention following the discovery of ribozymes in the early 1980s. Numerous nucleic acid catalysts have been developed to catalyze a wide range of reactions, and the structures of ribozymes have been modified to allow allosteric regulation by an external cofactor. All these constructs hold considerable promise for applications in biosensors for medical and environmental diagnostics, as well as in molecular tools for regulating cellular processes. In addition to the development of nucleic acid enzymes through in vitro selection, rational design offers a robust strategy for engineering ribozymes with customized properties. The structures and mechanisms of numerous nucleic acid catalysts have been thoroughly elucidated, making structural modulation a viable approach for designing their functional properties. Rational design necessitates the consideration of several parameters, and a range of tools is available to guide sequence design. This review discusses sequence, structural, and functional design, primarily using the example of the hairpin ribozyme, to highlight the challenges and opportunities of rational nucleic acid enzyme engineering.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e2500213"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering of Small Ribozymes Acting on RNA: What is Needed to Make a New Function Work with an Existing Catalyst?\",\"authors\":\"Constanze Ebermann, Sabine Müller\",\"doi\":\"10.1002/cbic.202500213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The engineering of nucleic acids has been a longstanding objective in research, with the field gaining significant attention following the discovery of ribozymes in the early 1980s. Numerous nucleic acid catalysts have been developed to catalyze a wide range of reactions, and the structures of ribozymes have been modified to allow allosteric regulation by an external cofactor. All these constructs hold considerable promise for applications in biosensors for medical and environmental diagnostics, as well as in molecular tools for regulating cellular processes. In addition to the development of nucleic acid enzymes through in vitro selection, rational design offers a robust strategy for engineering ribozymes with customized properties. The structures and mechanisms of numerous nucleic acid catalysts have been thoroughly elucidated, making structural modulation a viable approach for designing their functional properties. Rational design necessitates the consideration of several parameters, and a range of tools is available to guide sequence design. This review discusses sequence, structural, and functional design, primarily using the example of the hairpin ribozyme, to highlight the challenges and opportunities of rational nucleic acid enzyme engineering.</p>\",\"PeriodicalId\":140,\"journal\":{\"name\":\"ChemBioChem\",\"volume\":\" \",\"pages\":\"e2500213\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioChem\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cbic.202500213\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202500213","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

核酸工程一直是一个长期的研究目标,随着20世纪80年代初核酶的发现,该领域受到了极大的关注。许多核酸催化剂已被开发用于催化广泛的反应,核酶的结构已被修改以允许由外部辅因子进行变构调节。所有这些结构在用于医疗和环境诊断的生物传感器以及用于调节细胞过程的分子工具方面具有相当大的应用前景。除了通过体外选择开发核酸酶外,理性设计为具有定制特性的工程核酶提供了强大的策略。许多核酸催化剂的结构和机理已经被彻底阐明,使结构调节成为设计其功能特性的可行方法。合理的设计需要考虑几个参数,并且可以使用一系列工具来指导顺序设计。在这篇综述中,我们主要以发夹核酶为例,讨论了序列、结构和功能设计,以突出理性核酸酶工程的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering of Small Ribozymes Acting on RNA: What is Needed to Make a New Function Work with an Existing Catalyst?

The engineering of nucleic acids has been a longstanding objective in research, with the field gaining significant attention following the discovery of ribozymes in the early 1980s. Numerous nucleic acid catalysts have been developed to catalyze a wide range of reactions, and the structures of ribozymes have been modified to allow allosteric regulation by an external cofactor. All these constructs hold considerable promise for applications in biosensors for medical and environmental diagnostics, as well as in molecular tools for regulating cellular processes. In addition to the development of nucleic acid enzymes through in vitro selection, rational design offers a robust strategy for engineering ribozymes with customized properties. The structures and mechanisms of numerous nucleic acid catalysts have been thoroughly elucidated, making structural modulation a viable approach for designing their functional properties. Rational design necessitates the consideration of several parameters, and a range of tools is available to guide sequence design. This review discusses sequence, structural, and functional design, primarily using the example of the hairpin ribozyme, to highlight the challenges and opportunities of rational nucleic acid enzyme engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信