{"title":"作用于RNA的小核糖酶的工程:需要什么才能使新功能与现有催化剂协同工作?","authors":"Constanze Ebermann, Sabine Müller","doi":"10.1002/cbic.202500213","DOIUrl":null,"url":null,"abstract":"<p><p>The engineering of nucleic acids has been a longstanding objective in research, with the field gaining significant attention following the discovery of ribozymes in the early 1980s. Numerous nucleic acid catalysts have been developed to catalyze a wide range of reactions, and the structures of ribozymes have been modified to allow allosteric regulation by an external cofactor. All these constructs hold considerable promise for applications in biosensors for medical and environmental diagnostics, as well as in molecular tools for regulating cellular processes. In addition to the development of nucleic acid enzymes through in vitro selection, rational design offers a robust strategy for engineering ribozymes with customized properties. The structures and mechanisms of numerous nucleic acid catalysts have been thoroughly elucidated, making structural modulation a viable approach for designing their functional properties. Rational design necessitates the consideration of several parameters, and a range of tools is available to guide sequence design. This review discusses sequence, structural, and functional design, primarily using the example of the hairpin ribozyme, to highlight the challenges and opportunities of rational nucleic acid enzyme engineering.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e2500213"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering of Small Ribozymes Acting on RNA: What is Needed to Make a New Function Work with an Existing Catalyst?\",\"authors\":\"Constanze Ebermann, Sabine Müller\",\"doi\":\"10.1002/cbic.202500213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The engineering of nucleic acids has been a longstanding objective in research, with the field gaining significant attention following the discovery of ribozymes in the early 1980s. Numerous nucleic acid catalysts have been developed to catalyze a wide range of reactions, and the structures of ribozymes have been modified to allow allosteric regulation by an external cofactor. All these constructs hold considerable promise for applications in biosensors for medical and environmental diagnostics, as well as in molecular tools for regulating cellular processes. In addition to the development of nucleic acid enzymes through in vitro selection, rational design offers a robust strategy for engineering ribozymes with customized properties. The structures and mechanisms of numerous nucleic acid catalysts have been thoroughly elucidated, making structural modulation a viable approach for designing their functional properties. Rational design necessitates the consideration of several parameters, and a range of tools is available to guide sequence design. This review discusses sequence, structural, and functional design, primarily using the example of the hairpin ribozyme, to highlight the challenges and opportunities of rational nucleic acid enzyme engineering.</p>\",\"PeriodicalId\":140,\"journal\":{\"name\":\"ChemBioChem\",\"volume\":\" \",\"pages\":\"e2500213\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioChem\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cbic.202500213\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202500213","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Engineering of Small Ribozymes Acting on RNA: What is Needed to Make a New Function Work with an Existing Catalyst?
The engineering of nucleic acids has been a longstanding objective in research, with the field gaining significant attention following the discovery of ribozymes in the early 1980s. Numerous nucleic acid catalysts have been developed to catalyze a wide range of reactions, and the structures of ribozymes have been modified to allow allosteric regulation by an external cofactor. All these constructs hold considerable promise for applications in biosensors for medical and environmental diagnostics, as well as in molecular tools for regulating cellular processes. In addition to the development of nucleic acid enzymes through in vitro selection, rational design offers a robust strategy for engineering ribozymes with customized properties. The structures and mechanisms of numerous nucleic acid catalysts have been thoroughly elucidated, making structural modulation a viable approach for designing their functional properties. Rational design necessitates the consideration of several parameters, and a range of tools is available to guide sequence design. This review discusses sequence, structural, and functional design, primarily using the example of the hairpin ribozyme, to highlight the challenges and opportunities of rational nucleic acid enzyme engineering.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).