Yu-Fan Du, Zheng Wang, Huan Tang, Zhao-Qing Lu, Guo-Xing Wang
{"title":"芪参活血颗粒通过MasR/PI3K-AKT-mTOR途径抑制过度自噬,改善lps诱导的心肌细胞损伤","authors":"Yu-Fan Du, Zheng Wang, Huan Tang, Zhao-Qing Lu, Guo-Xing Wang","doi":"10.2174/0113862073359792250401180222","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Qishen Huoxue Granule (QHG), a classical Traditional Chinese Medicine prescription, can reduce septic cardiomyopathy in the clinic. However, the mechanism of QHG remains unclear. This study aims to investigate the mechanism and effect of QHG-contained serum (QHG-CS) on sepsis-induced cardiomyopathy (SICM).</p><p><strong>Methods: </strong>QHG was administered to Wistar rats via gavage to obtain QHG-CS. The chemical constituents of QHG-CS were identified via UPLC-Q-TOF-MS. In vitro, rat cardiomyocytes H9c2 cells isolated from embryonic BD1X rat heart tissue, and septic myocardial injury model was established by inducing H9c2 cells with lipopolysaccharide (LPS). Cell viability was assessed through CCK-8. Protein expression was determined using western blot, and gene expression was measured using real-time quantitative PCR. Cell autophagy was investigated by detecting LC3 expression using flow cytometry and immunofluorescence. In addition, three inhibitors, A779 (MasR), wortmannin (PI3K) and rapamycin (mTOR) were used to focus the potential therapeutic targets.</p><p><strong>Results: </strong>QHG-CS significantly improved the survival of septic cardiomyocytes (p<0.0001). The expression of autophagy-related markers Beclin1, ATG5, and LC3II/I was increased in LPSinduced cardiomyocytes, which could be inhibited by QHG-CS. QHG-CS upregulated the mRNA expression of MasR, PI3K, and AKT, as well as the phosphorylation of PI3K, AKT, and mTOR. Moreover, A779 markedly lowered mRNA levels of MasR, PI3K, and mTOR, while wortmannin decreased mRNA levels of PI3K and mTOR, whereas rapamycin only suppressed mTOR phosphorylation.</p><p><strong>Conclusions: </strong>By inhibiting excessive autophagy through upregulation of the MasR/PI3K-AKTmTOR pathway, QHG can alleviate sepsis-induced cardiomyocyte damage. This study provides novel perspectives for the management of sepsis-induced cardiac damage.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qishen Huoxue Granule Ameliorates LPS-induced Cardiomyocyte Injury by Suppressing Excessive Autophagy via MasR/PI3K-AKT-mTOR Pathway.\",\"authors\":\"Yu-Fan Du, Zheng Wang, Huan Tang, Zhao-Qing Lu, Guo-Xing Wang\",\"doi\":\"10.2174/0113862073359792250401180222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Qishen Huoxue Granule (QHG), a classical Traditional Chinese Medicine prescription, can reduce septic cardiomyopathy in the clinic. However, the mechanism of QHG remains unclear. This study aims to investigate the mechanism and effect of QHG-contained serum (QHG-CS) on sepsis-induced cardiomyopathy (SICM).</p><p><strong>Methods: </strong>QHG was administered to Wistar rats via gavage to obtain QHG-CS. The chemical constituents of QHG-CS were identified via UPLC-Q-TOF-MS. In vitro, rat cardiomyocytes H9c2 cells isolated from embryonic BD1X rat heart tissue, and septic myocardial injury model was established by inducing H9c2 cells with lipopolysaccharide (LPS). Cell viability was assessed through CCK-8. Protein expression was determined using western blot, and gene expression was measured using real-time quantitative PCR. Cell autophagy was investigated by detecting LC3 expression using flow cytometry and immunofluorescence. In addition, three inhibitors, A779 (MasR), wortmannin (PI3K) and rapamycin (mTOR) were used to focus the potential therapeutic targets.</p><p><strong>Results: </strong>QHG-CS significantly improved the survival of septic cardiomyocytes (p<0.0001). The expression of autophagy-related markers Beclin1, ATG5, and LC3II/I was increased in LPSinduced cardiomyocytes, which could be inhibited by QHG-CS. QHG-CS upregulated the mRNA expression of MasR, PI3K, and AKT, as well as the phosphorylation of PI3K, AKT, and mTOR. Moreover, A779 markedly lowered mRNA levels of MasR, PI3K, and mTOR, while wortmannin decreased mRNA levels of PI3K and mTOR, whereas rapamycin only suppressed mTOR phosphorylation.</p><p><strong>Conclusions: </strong>By inhibiting excessive autophagy through upregulation of the MasR/PI3K-AKTmTOR pathway, QHG can alleviate sepsis-induced cardiomyocyte damage. This study provides novel perspectives for the management of sepsis-induced cardiac damage.</p>\",\"PeriodicalId\":10491,\"journal\":{\"name\":\"Combinatorial chemistry & high throughput screening\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorial chemistry & high throughput screening\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113862073359792250401180222\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073359792250401180222","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Qishen Huoxue Granule Ameliorates LPS-induced Cardiomyocyte Injury by Suppressing Excessive Autophagy via MasR/PI3K-AKT-mTOR Pathway.
Objective: Qishen Huoxue Granule (QHG), a classical Traditional Chinese Medicine prescription, can reduce septic cardiomyopathy in the clinic. However, the mechanism of QHG remains unclear. This study aims to investigate the mechanism and effect of QHG-contained serum (QHG-CS) on sepsis-induced cardiomyopathy (SICM).
Methods: QHG was administered to Wistar rats via gavage to obtain QHG-CS. The chemical constituents of QHG-CS were identified via UPLC-Q-TOF-MS. In vitro, rat cardiomyocytes H9c2 cells isolated from embryonic BD1X rat heart tissue, and septic myocardial injury model was established by inducing H9c2 cells with lipopolysaccharide (LPS). Cell viability was assessed through CCK-8. Protein expression was determined using western blot, and gene expression was measured using real-time quantitative PCR. Cell autophagy was investigated by detecting LC3 expression using flow cytometry and immunofluorescence. In addition, three inhibitors, A779 (MasR), wortmannin (PI3K) and rapamycin (mTOR) were used to focus the potential therapeutic targets.
Results: QHG-CS significantly improved the survival of septic cardiomyocytes (p<0.0001). The expression of autophagy-related markers Beclin1, ATG5, and LC3II/I was increased in LPSinduced cardiomyocytes, which could be inhibited by QHG-CS. QHG-CS upregulated the mRNA expression of MasR, PI3K, and AKT, as well as the phosphorylation of PI3K, AKT, and mTOR. Moreover, A779 markedly lowered mRNA levels of MasR, PI3K, and mTOR, while wortmannin decreased mRNA levels of PI3K and mTOR, whereas rapamycin only suppressed mTOR phosphorylation.
Conclusions: By inhibiting excessive autophagy through upregulation of the MasR/PI3K-AKTmTOR pathway, QHG can alleviate sepsis-induced cardiomyocyte damage. This study provides novel perspectives for the management of sepsis-induced cardiac damage.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.