一种基于人工智能的多相化相关单原子催化剂原子尺度分析方法。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Paula Aniceto-Ocaña, José Marqueses-Rodriguez, Juan M Muñoz-Ocaña, María J Fernandez-Trujillo, Andrés G Algarra, Antonio M Rodriguez-Chia, José J Calvino, Carmen E Castillo, Miguel Lopez-Haro
{"title":"一种基于人工智能的多相化相关单原子催化剂原子尺度分析方法。","authors":"Paula Aniceto-Ocaña, José Marqueses-Rodriguez, Juan M Muñoz-Ocaña, María J Fernandez-Trujillo, Andrés G Algarra, Antonio M Rodriguez-Chia, José J Calvino, Carmen E Castillo, Miguel Lopez-Haro","doi":"10.1002/smtd.202402010","DOIUrl":null,"url":null,"abstract":"<p><p>Correlated single-atom catalysts offer transformative potential in catalysis, particularly in the field of electrocatalysis, with a focus on oxygen evolution reactions. Advanced characterization is critical to understanding their atomic-scale properties when techniques usually used in molecular science (Nuclear Magnetic Resonance (NMR), X-ray Diffraction (XRD), Infrared spectroscopy (IR), or Mass Spectrometry (MS)) cannot be applied after dispersing them on a carrier material. Here, a methodology that combines machine learning and mathematical optimization techniques to detect and quantify metal-metal interactions within heterobinuclear Au(III)-Pd(II) macrocyclic complexes on atomically resolved high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images is introduced. Both supervised and unsupervised machine learning methods are evaluated, with the U-net architecture demonstrating superior performance in distinguishing the two involved chemical species. Mathematical optimization models further enhance the reliability of metal pair identification by providing precise distance metrics for the pairs. This methodology allows for the study of both the dynamics and bond interaction of heterobinuclear Au(III)-Pd(II) complexes. Notably, the analysis of time series of images reveals that most metal pairs remained stable under the high-energy electron beam irradiation conditions. Likewise, the Au-Pd distance within the pairs remains unchanged, indicating a robust interaction of the two metals with the ligand even after being deposited on the amorphous carbon substrate.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2402010"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An AI-Powered Methodology for Atomic-Scale Analysis of Heterogenized Correlated Single-Atom Catalysts.\",\"authors\":\"Paula Aniceto-Ocaña, José Marqueses-Rodriguez, Juan M Muñoz-Ocaña, María J Fernandez-Trujillo, Andrés G Algarra, Antonio M Rodriguez-Chia, José J Calvino, Carmen E Castillo, Miguel Lopez-Haro\",\"doi\":\"10.1002/smtd.202402010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Correlated single-atom catalysts offer transformative potential in catalysis, particularly in the field of electrocatalysis, with a focus on oxygen evolution reactions. Advanced characterization is critical to understanding their atomic-scale properties when techniques usually used in molecular science (Nuclear Magnetic Resonance (NMR), X-ray Diffraction (XRD), Infrared spectroscopy (IR), or Mass Spectrometry (MS)) cannot be applied after dispersing them on a carrier material. Here, a methodology that combines machine learning and mathematical optimization techniques to detect and quantify metal-metal interactions within heterobinuclear Au(III)-Pd(II) macrocyclic complexes on atomically resolved high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images is introduced. Both supervised and unsupervised machine learning methods are evaluated, with the U-net architecture demonstrating superior performance in distinguishing the two involved chemical species. Mathematical optimization models further enhance the reliability of metal pair identification by providing precise distance metrics for the pairs. This methodology allows for the study of both the dynamics and bond interaction of heterobinuclear Au(III)-Pd(II) complexes. Notably, the analysis of time series of images reveals that most metal pairs remained stable under the high-energy electron beam irradiation conditions. Likewise, the Au-Pd distance within the pairs remains unchanged, indicating a robust interaction of the two metals with the ligand even after being deposited on the amorphous carbon substrate.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2402010\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202402010\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202402010","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

相关的单原子催化剂在催化领域,特别是在电催化领域提供了变革的潜力,重点是析氧反应。当分子科学中常用的技术(核磁共振(NMR)、x射线衍射(XRD)、红外光谱(IR)或质谱(MS))在将它们分散在载体材料上后无法应用时,高级表征对于理解它们的原子尺度性质至关重要。本文介绍了一种结合机器学习和数学优化技术的方法,用于在原子分辨高角度环形暗场扫描透射电子显微镜(HAADF-STEM)图像上检测和量化杂双核Au(III)-Pd(II)大环配合物中的金属-金属相互作用。评估了有监督和无监督机器学习方法,U-net架构在区分两种涉及的化学物质方面表现出优越的性能。数学优化模型通过为金属对提供精确的距离度量,进一步提高了金属对识别的可靠性。这种方法允许研究动力学和杂双核Au(III)-Pd(II)配合物的键相互作用。值得注意的是,对时间序列图像的分析表明,在高能电子束照射条件下,大多数金属对保持稳定。同样,Au-Pd对内的距离保持不变,表明即使沉积在无定形碳衬底上,这两种金属与配体的相互作用也很强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An AI-Powered Methodology for Atomic-Scale Analysis of Heterogenized Correlated Single-Atom Catalysts.

Correlated single-atom catalysts offer transformative potential in catalysis, particularly in the field of electrocatalysis, with a focus on oxygen evolution reactions. Advanced characterization is critical to understanding their atomic-scale properties when techniques usually used in molecular science (Nuclear Magnetic Resonance (NMR), X-ray Diffraction (XRD), Infrared spectroscopy (IR), or Mass Spectrometry (MS)) cannot be applied after dispersing them on a carrier material. Here, a methodology that combines machine learning and mathematical optimization techniques to detect and quantify metal-metal interactions within heterobinuclear Au(III)-Pd(II) macrocyclic complexes on atomically resolved high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images is introduced. Both supervised and unsupervised machine learning methods are evaluated, with the U-net architecture demonstrating superior performance in distinguishing the two involved chemical species. Mathematical optimization models further enhance the reliability of metal pair identification by providing precise distance metrics for the pairs. This methodology allows for the study of both the dynamics and bond interaction of heterobinuclear Au(III)-Pd(II) complexes. Notably, the analysis of time series of images reveals that most metal pairs remained stable under the high-energy electron beam irradiation conditions. Likewise, the Au-Pd distance within the pairs remains unchanged, indicating a robust interaction of the two metals with the ligand even after being deposited on the amorphous carbon substrate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信