具有仿生s形应力-应变行为的3D打印超弹性晶格超材料建模与设计。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Le Dong, Mengjie Zhang, Dong Wang
{"title":"具有仿生s形应力-应变行为的3D打印超弹性晶格超材料建模与设计。","authors":"Le Dong, Mengjie Zhang, Dong Wang","doi":"10.1039/d4mh01582g","DOIUrl":null,"url":null,"abstract":"<p><p>Lattice metamaterials made of stiff polymers, ceramics, and metals have been extensively designed to reproduce the mechanical behaviors of biological tissues, holding promising applications in biomedical devices and tissue engineering. However, lattice metamaterials composed of soft materials have been far less explored due to challenges posed by material nonlinearity and large deformations. Here, hyperelastic lattice metamaterials with curved microstructures are fabricated by 3D printing elastomers and are developed to mimic bionic S-shaped stress-strain behaviors. We propose a design framework for 3D printed hyperelastic lattice metamaterials that integrates digital geometry generation, hierarchical mechanics modeling, and validation by finite element (FE) simulations and experiments. The microstructures are modeled through deriving a Timoshenko-type beam theory governed by hyperelastic strain energy potentials. The model is then combined with the deformation and equilibrium analysis considering non-rigid connections between microstructures to predict the mechanical responses of hyperelastic lattice metamaterials. Using the developed design framework, programmable S-shaped stress-strain behaviors and high fracture strains (over 800%) are achieved. We demonstrate S-shaped stress-strain curves that match skeletal and cardiac muscles and highly stretchable lattice sensors for remote controls. This study provides design methods and theoretical guidelines for hyperelastic lattice metamaterials, holding promise for robotic sensors with bionic performance and functionality.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and design of 3D printed hyperelastic lattice metamaterials with bionic S-shaped stress-strain behaviors.\",\"authors\":\"Le Dong, Mengjie Zhang, Dong Wang\",\"doi\":\"10.1039/d4mh01582g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lattice metamaterials made of stiff polymers, ceramics, and metals have been extensively designed to reproduce the mechanical behaviors of biological tissues, holding promising applications in biomedical devices and tissue engineering. However, lattice metamaterials composed of soft materials have been far less explored due to challenges posed by material nonlinearity and large deformations. Here, hyperelastic lattice metamaterials with curved microstructures are fabricated by 3D printing elastomers and are developed to mimic bionic S-shaped stress-strain behaviors. We propose a design framework for 3D printed hyperelastic lattice metamaterials that integrates digital geometry generation, hierarchical mechanics modeling, and validation by finite element (FE) simulations and experiments. The microstructures are modeled through deriving a Timoshenko-type beam theory governed by hyperelastic strain energy potentials. The model is then combined with the deformation and equilibrium analysis considering non-rigid connections between microstructures to predict the mechanical responses of hyperelastic lattice metamaterials. Using the developed design framework, programmable S-shaped stress-strain behaviors and high fracture strains (over 800%) are achieved. We demonstrate S-shaped stress-strain curves that match skeletal and cardiac muscles and highly stretchable lattice sensors for remote controls. This study provides design methods and theoretical guidelines for hyperelastic lattice metamaterials, holding promise for robotic sensors with bionic performance and functionality.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01582g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01582g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由刚性聚合物、陶瓷和金属制成的晶格超材料被广泛设计用于再现生物组织的机械行为,在生物医学设备和组织工程中有着广阔的应用前景。然而,由于材料的非线性和大变形的挑战,由软材料组成的晶格超材料的研究还远远不够。本文利用3D打印弹性体制备了具有弯曲微结构的超弹性晶格超材料,并开发了模拟仿生s形应力-应变行为的超弹性晶格超材料。我们提出了一个3D打印超弹性晶格超材料的设计框架,该框架集成了数字几何生成、分层力学建模和有限元仿真和实验验证。通过导出由超弹性应变能势控制的timoshenko型梁理论来模拟微观结构。然后将该模型与考虑微观结构间非刚性连接的变形和平衡分析相结合,预测超弹性点阵超材料的力学响应。利用开发的设计框架,实现了可编程的s形应力-应变行为和高断裂应变(超过800%)。我们展示了s形的应力-应变曲线,与骨骼肌和心肌以及用于远程控制的高度可拉伸的晶格传感器相匹配。该研究为超弹性晶格超材料的设计提供了方法和理论指导,为具有仿生性能和功能的机器人传感器提供了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and design of 3D printed hyperelastic lattice metamaterials with bionic S-shaped stress-strain behaviors.

Lattice metamaterials made of stiff polymers, ceramics, and metals have been extensively designed to reproduce the mechanical behaviors of biological tissues, holding promising applications in biomedical devices and tissue engineering. However, lattice metamaterials composed of soft materials have been far less explored due to challenges posed by material nonlinearity and large deformations. Here, hyperelastic lattice metamaterials with curved microstructures are fabricated by 3D printing elastomers and are developed to mimic bionic S-shaped stress-strain behaviors. We propose a design framework for 3D printed hyperelastic lattice metamaterials that integrates digital geometry generation, hierarchical mechanics modeling, and validation by finite element (FE) simulations and experiments. The microstructures are modeled through deriving a Timoshenko-type beam theory governed by hyperelastic strain energy potentials. The model is then combined with the deformation and equilibrium analysis considering non-rigid connections between microstructures to predict the mechanical responses of hyperelastic lattice metamaterials. Using the developed design framework, programmable S-shaped stress-strain behaviors and high fracture strains (over 800%) are achieved. We demonstrate S-shaped stress-strain curves that match skeletal and cardiac muscles and highly stretchable lattice sensors for remote controls. This study provides design methods and theoretical guidelines for hyperelastic lattice metamaterials, holding promise for robotic sensors with bionic performance and functionality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信