靶向离子通道的肽毒素在上皮细胞缺血再灌注损伤中的细胞保护作用。

Q3 Biochemistry, Genetics and Molecular Biology
E V Iurova, E V Rastorgueva, E A Beloborodov, D E Sugak, E S Pogodina, A N Fomin, Y V Saenko
{"title":"靶向离子通道的肽毒素在上皮细胞缺血再灌注损伤中的细胞保护作用。","authors":"E V Iurova, E V Rastorgueva, E A Beloborodov, D E Sugak, E S Pogodina, A N Fomin, Y V Saenko","doi":"10.18097/PBMCR1553","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemia-reperfusion injury (IRI) is a complex process accompanying cessation of blood supply to an organ or tissue followed by subsequent restoration of blood circulation. The IRI is especially prominent in surgery and organ transplantation. One of the strategies for reducing organ and tissue damage during transplantation is regulation of intracellular ion concentrations. Maintenance of ion concentrations in the cell during damage development can be controlled by influencing voltage-dependent ion channels with certain types of compounds. We propose the peptide toxins tropic to calcium (omega-hexatoxin-Hv1a) and sodium (mu-agatoxin-Aa1a) voltage-dependent ion channels as potential agents reducing IRI. The toxins were obtained using solid-phase peptide synthesis. The IRI modeling for evaluation of the action of toxins was carried out on a culture of epithelial cells CHO-K1 during their incubation under conditions of hypoxia and nutrient deprivation followed by subsequent replenishment of the nutrient medium. The level of cell death, concentrations of calcium, sodium, potassium ions, and pH were recorded using a multimodal plate reader and fluorescent dyes. Experiments have shown that regardless of different mechanisms of action, both toxins reduced the development of CHO-K1 cell death by changing ion concentrations and maintaining the pH level.</p>","PeriodicalId":8889,"journal":{"name":"Biomeditsinskaya khimiya","volume":"71 2","pages":"116-126"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peptide toxins targeting ion channels as cytoprotective agents in ischemia-reperfusion injury of epithelial cells.\",\"authors\":\"E V Iurova, E V Rastorgueva, E A Beloborodov, D E Sugak, E S Pogodina, A N Fomin, Y V Saenko\",\"doi\":\"10.18097/PBMCR1553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ischemia-reperfusion injury (IRI) is a complex process accompanying cessation of blood supply to an organ or tissue followed by subsequent restoration of blood circulation. The IRI is especially prominent in surgery and organ transplantation. One of the strategies for reducing organ and tissue damage during transplantation is regulation of intracellular ion concentrations. Maintenance of ion concentrations in the cell during damage development can be controlled by influencing voltage-dependent ion channels with certain types of compounds. We propose the peptide toxins tropic to calcium (omega-hexatoxin-Hv1a) and sodium (mu-agatoxin-Aa1a) voltage-dependent ion channels as potential agents reducing IRI. The toxins were obtained using solid-phase peptide synthesis. The IRI modeling for evaluation of the action of toxins was carried out on a culture of epithelial cells CHO-K1 during their incubation under conditions of hypoxia and nutrient deprivation followed by subsequent replenishment of the nutrient medium. The level of cell death, concentrations of calcium, sodium, potassium ions, and pH were recorded using a multimodal plate reader and fluorescent dyes. Experiments have shown that regardless of different mechanisms of action, both toxins reduced the development of CHO-K1 cell death by changing ion concentrations and maintaining the pH level.</p>\",\"PeriodicalId\":8889,\"journal\":{\"name\":\"Biomeditsinskaya khimiya\",\"volume\":\"71 2\",\"pages\":\"116-126\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomeditsinskaya khimiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18097/PBMCR1553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomeditsinskaya khimiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18097/PBMCR1553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

缺血再灌注损伤(IRI)是一个复杂的过程,伴随着器官或组织血液供应的停止,随后血液循环恢复。IRI在外科手术和器官移植中尤为突出。减少移植过程中器官和组织损伤的策略之一是调节细胞内离子浓度。在细胞损伤发展过程中,离子浓度的维持可以通过用某些类型的化合物影响电压依赖性离子通道来控制。我们提出了钙(- omega-hexatoxin-Hv1a)和钠(mu-agatoxin-Aa1a)电压依赖性离子通道的肽毒素作为减少IRI的潜在药物。采用固相肽合成法获得毒素。用于评估毒素作用的IRI模型在缺氧和营养剥夺条件下培养上皮细胞CHO-K1,随后补充营养培养基。使用多模态平板阅读器和荧光染料记录细胞死亡水平、钙、钠、钾离子浓度和pH值。实验表明,无论作用机制如何,这两种毒素都通过改变离子浓度和维持pH水平来减少CHO-K1细胞死亡的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Peptide toxins targeting ion channels as cytoprotective agents in ischemia-reperfusion injury of epithelial cells.

Ischemia-reperfusion injury (IRI) is a complex process accompanying cessation of blood supply to an organ or tissue followed by subsequent restoration of blood circulation. The IRI is especially prominent in surgery and organ transplantation. One of the strategies for reducing organ and tissue damage during transplantation is regulation of intracellular ion concentrations. Maintenance of ion concentrations in the cell during damage development can be controlled by influencing voltage-dependent ion channels with certain types of compounds. We propose the peptide toxins tropic to calcium (omega-hexatoxin-Hv1a) and sodium (mu-agatoxin-Aa1a) voltage-dependent ion channels as potential agents reducing IRI. The toxins were obtained using solid-phase peptide synthesis. The IRI modeling for evaluation of the action of toxins was carried out on a culture of epithelial cells CHO-K1 during their incubation under conditions of hypoxia and nutrient deprivation followed by subsequent replenishment of the nutrient medium. The level of cell death, concentrations of calcium, sodium, potassium ions, and pH were recorded using a multimodal plate reader and fluorescent dyes. Experiments have shown that regardless of different mechanisms of action, both toxins reduced the development of CHO-K1 cell death by changing ion concentrations and maintaining the pH level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomeditsinskaya khimiya
Biomeditsinskaya khimiya Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.30
自引率
0.00%
发文量
49
期刊介绍: The aim of the Russian-language journal "Biomeditsinskaya Khimiya" (Biomedical Chemistry) is to introduce the latest results obtained by scientists from Russia and other Republics of the Former Soviet Union. The Journal will cover all major areas of Biomedical chemistry, including neurochemistry, clinical chemistry, molecular biology of pathological processes, gene therapy, development of new drugs and their biochemical pharmacology, introduction and advertisement of new (biochemical) methods into experimental and clinical medicine etc. The Journal also publish review articles. All issues of journal usually contain invited reviews. Papers written in Russian contain abstract (in English).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信