Shanyu Ye, Yanqing Wang, Ziwei Luo, Aijun Liu, Xican Li, Jiasong Guo, Wei Zhao, Dongfeng Chen, Lin Yang, Helu Liu
{"title":"E3连接酶Trim63通过催化K27-linked半胱氨酸泛素化Myh11促进间充质干细胞的软骨分化。","authors":"Shanyu Ye, Yanqing Wang, Ziwei Luo, Aijun Liu, Xican Li, Jiasong Guo, Wei Zhao, Dongfeng Chen, Lin Yang, Helu Liu","doi":"10.1093/stmcls/sxaf017","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) are multipotent stem cells that have a chondrogenic differentiation capacity. However, the molecular mechanism underlying the chondrogenic differentiation of MSCs has not been fully elucidated, which hinders further development of MSC-based cell therapies for cartilage repair in the clinic. Here, we showed that the E3 ubiquitin ligase Trim63 positively regulates the chondrogenic differentiation of MSCs by catalyzing K27-linked cysteine ubiquitination of Myh11. Trim63 directly interacts with Myh11 and catalyzes K27-linked ubiquitination of cys382. Mutation of cys382 diminishes Trim63-catalyzed K27-linked ubiquitination and chondrogenic differentiation of MSCs. A deficiency in Trim63 significantly impairs the chondrogenic differentiation of MSCs. Trim63 enhances the repair of articular cartilage defects in vivo. Taken together, the results of our study demonstrated that Trim63 promotes the chondrogenic differentiation of MSCs by catalyzing K27-linked cysteine ubiquitination of Myh11, which provides an alternative therapeutic target for cartilage regeneration and repair.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"E3 ligase Trim63 promotes the chondrogenic differentiation of mesenchymal stem cells by catalyzing K27-linked cysteine ubiquitination of Myh11.\",\"authors\":\"Shanyu Ye, Yanqing Wang, Ziwei Luo, Aijun Liu, Xican Li, Jiasong Guo, Wei Zhao, Dongfeng Chen, Lin Yang, Helu Liu\",\"doi\":\"10.1093/stmcls/sxaf017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mesenchymal stem cells (MSCs) are multipotent stem cells that have a chondrogenic differentiation capacity. However, the molecular mechanism underlying the chondrogenic differentiation of MSCs has not been fully elucidated, which hinders further development of MSC-based cell therapies for cartilage repair in the clinic. Here, we showed that the E3 ubiquitin ligase Trim63 positively regulates the chondrogenic differentiation of MSCs by catalyzing K27-linked cysteine ubiquitination of Myh11. Trim63 directly interacts with Myh11 and catalyzes K27-linked ubiquitination of cys382. Mutation of cys382 diminishes Trim63-catalyzed K27-linked ubiquitination and chondrogenic differentiation of MSCs. A deficiency in Trim63 significantly impairs the chondrogenic differentiation of MSCs. Trim63 enhances the repair of articular cartilage defects in vivo. Taken together, the results of our study demonstrated that Trim63 promotes the chondrogenic differentiation of MSCs by catalyzing K27-linked cysteine ubiquitination of Myh11, which provides an alternative therapeutic target for cartilage regeneration and repair.</p>\",\"PeriodicalId\":231,\"journal\":{\"name\":\"STEM CELLS\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"STEM CELLS\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/stmcls/sxaf017\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxaf017","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
E3 ligase Trim63 promotes the chondrogenic differentiation of mesenchymal stem cells by catalyzing K27-linked cysteine ubiquitination of Myh11.
Mesenchymal stem cells (MSCs) are multipotent stem cells that have a chondrogenic differentiation capacity. However, the molecular mechanism underlying the chondrogenic differentiation of MSCs has not been fully elucidated, which hinders further development of MSC-based cell therapies for cartilage repair in the clinic. Here, we showed that the E3 ubiquitin ligase Trim63 positively regulates the chondrogenic differentiation of MSCs by catalyzing K27-linked cysteine ubiquitination of Myh11. Trim63 directly interacts with Myh11 and catalyzes K27-linked ubiquitination of cys382. Mutation of cys382 diminishes Trim63-catalyzed K27-linked ubiquitination and chondrogenic differentiation of MSCs. A deficiency in Trim63 significantly impairs the chondrogenic differentiation of MSCs. Trim63 enhances the repair of articular cartilage defects in vivo. Taken together, the results of our study demonstrated that Trim63 promotes the chondrogenic differentiation of MSCs by catalyzing K27-linked cysteine ubiquitination of Myh11, which provides an alternative therapeutic target for cartilage regeneration and repair.
期刊介绍:
STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology.
STEM CELLS covers:
Cancer Stem Cells,
Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells,
Regenerative Medicine,
Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics,
Tissue-Specific Stem Cells,
Translational and Clinical Research.