{"title":"日粮中添加海藻糖对轻产蛋鸡蛋品质和胫骨强度的影响。","authors":"Fernando Perazzo Costa, Isabelle Kaneko, Thamires Ferreira, Jorge Muniz, Eliane Silva, Adiel Lima, Raul Lima Neto, Matheus Ramalho Lima, Thiago Moreira","doi":"10.3390/ani15091318","DOIUrl":null,"url":null,"abstract":"<p><p>Trehalose, a disaccharide consisting of two D-glucose molecules, is present in a variety of organisms, including bacteria, yeast, fungi, insects, and plants. In plants, it functions as a source of energy and carbon, and in yeast and plants, it serves as a signaling molecule, influencing metabolic pathways and growth regulation. Additionally, it plays a role in protecting proteins and cell membranes from stress-induced damage. This study aims to assess the optimal level of trehalose supplementation in the diets of layer hens aged 34 to 49 weeks, addressing the limited existing literature on its effects on productivity. Experimental diets, designed in accordance with nutritional recommendations, were formulated to contain six different levels of trehalose (0, 0.05, 0.10, 0.30, 0.60, and 1.00%). The study was conducted over five 21-day periods, during which various performance parameters were evaluated. The results indicated that trehalose supplementation at levels of 0.05%, 0.10%, and 0.30% led to increased feed intake (FI) compared to the 1.00% level (<i>p</i> < 0.05). Furthermore, the highest trehalose level (1.00%) significantly reduced the feed conversion ratio by egg mass (FCRem) compared to both the control group and the other supplementation levels; however, the feed conversion ratio by dry matter (FCRDz) remained consistent across all treatments. The levels of 0.05%, 0.10%, and 0.30% exhibited superior FCREm and FCRDz compared to the 1.00% level. Egg weight (EW) was higher in the trehalose-supplemented groups compared to the control group. Additionally, the 1.00% trehalose treatment was found to be the most effective in terms of relative weights of shells (RWS), and egg mass (EM) was higher at all trehalose levels compared to the control group. The antioxidant status, as measured by malondialdehyde (MDA) levels, indicated that supplementation with 0.30% and 0.60% trehalose had a protective effect against oxidative stress, although the 1.00% level resulted in increased MDA levels. Total weight (TW) was highest in the 0.30% treatment group, and bone strength (BS) improved in the groups supplemented with 0.10% and 1.00% trehalose. Other parameters, including lipid content (L), dry matter (DM), phosphorus (P), and calcium (Ca), did not show any significant differences among the treatment groups. In conclusion, supplementation with 1.00% trehalose enhances feed efficiency, egg weight, and quality, with minimal impact on lipid peroxidation, while potentially providing benefits for gut health and egg quality.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070847/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Impact of Adding Trehalose to the Diet on Egg Quality and Tibia Strength in Light-Laying Hens.\",\"authors\":\"Fernando Perazzo Costa, Isabelle Kaneko, Thamires Ferreira, Jorge Muniz, Eliane Silva, Adiel Lima, Raul Lima Neto, Matheus Ramalho Lima, Thiago Moreira\",\"doi\":\"10.3390/ani15091318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trehalose, a disaccharide consisting of two D-glucose molecules, is present in a variety of organisms, including bacteria, yeast, fungi, insects, and plants. In plants, it functions as a source of energy and carbon, and in yeast and plants, it serves as a signaling molecule, influencing metabolic pathways and growth regulation. Additionally, it plays a role in protecting proteins and cell membranes from stress-induced damage. This study aims to assess the optimal level of trehalose supplementation in the diets of layer hens aged 34 to 49 weeks, addressing the limited existing literature on its effects on productivity. Experimental diets, designed in accordance with nutritional recommendations, were formulated to contain six different levels of trehalose (0, 0.05, 0.10, 0.30, 0.60, and 1.00%). The study was conducted over five 21-day periods, during which various performance parameters were evaluated. The results indicated that trehalose supplementation at levels of 0.05%, 0.10%, and 0.30% led to increased feed intake (FI) compared to the 1.00% level (<i>p</i> < 0.05). Furthermore, the highest trehalose level (1.00%) significantly reduced the feed conversion ratio by egg mass (FCRem) compared to both the control group and the other supplementation levels; however, the feed conversion ratio by dry matter (FCRDz) remained consistent across all treatments. The levels of 0.05%, 0.10%, and 0.30% exhibited superior FCREm and FCRDz compared to the 1.00% level. Egg weight (EW) was higher in the trehalose-supplemented groups compared to the control group. Additionally, the 1.00% trehalose treatment was found to be the most effective in terms of relative weights of shells (RWS), and egg mass (EM) was higher at all trehalose levels compared to the control group. The antioxidant status, as measured by malondialdehyde (MDA) levels, indicated that supplementation with 0.30% and 0.60% trehalose had a protective effect against oxidative stress, although the 1.00% level resulted in increased MDA levels. Total weight (TW) was highest in the 0.30% treatment group, and bone strength (BS) improved in the groups supplemented with 0.10% and 1.00% trehalose. Other parameters, including lipid content (L), dry matter (DM), phosphorus (P), and calcium (Ca), did not show any significant differences among the treatment groups. In conclusion, supplementation with 1.00% trehalose enhances feed efficiency, egg weight, and quality, with minimal impact on lipid peroxidation, while potentially providing benefits for gut health and egg quality.</p>\",\"PeriodicalId\":7955,\"journal\":{\"name\":\"Animals\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070847/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animals\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/ani15091318\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15091318","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
The Impact of Adding Trehalose to the Diet on Egg Quality and Tibia Strength in Light-Laying Hens.
Trehalose, a disaccharide consisting of two D-glucose molecules, is present in a variety of organisms, including bacteria, yeast, fungi, insects, and plants. In plants, it functions as a source of energy and carbon, and in yeast and plants, it serves as a signaling molecule, influencing metabolic pathways and growth regulation. Additionally, it plays a role in protecting proteins and cell membranes from stress-induced damage. This study aims to assess the optimal level of trehalose supplementation in the diets of layer hens aged 34 to 49 weeks, addressing the limited existing literature on its effects on productivity. Experimental diets, designed in accordance with nutritional recommendations, were formulated to contain six different levels of trehalose (0, 0.05, 0.10, 0.30, 0.60, and 1.00%). The study was conducted over five 21-day periods, during which various performance parameters were evaluated. The results indicated that trehalose supplementation at levels of 0.05%, 0.10%, and 0.30% led to increased feed intake (FI) compared to the 1.00% level (p < 0.05). Furthermore, the highest trehalose level (1.00%) significantly reduced the feed conversion ratio by egg mass (FCRem) compared to both the control group and the other supplementation levels; however, the feed conversion ratio by dry matter (FCRDz) remained consistent across all treatments. The levels of 0.05%, 0.10%, and 0.30% exhibited superior FCREm and FCRDz compared to the 1.00% level. Egg weight (EW) was higher in the trehalose-supplemented groups compared to the control group. Additionally, the 1.00% trehalose treatment was found to be the most effective in terms of relative weights of shells (RWS), and egg mass (EM) was higher at all trehalose levels compared to the control group. The antioxidant status, as measured by malondialdehyde (MDA) levels, indicated that supplementation with 0.30% and 0.60% trehalose had a protective effect against oxidative stress, although the 1.00% level resulted in increased MDA levels. Total weight (TW) was highest in the 0.30% treatment group, and bone strength (BS) improved in the groups supplemented with 0.10% and 1.00% trehalose. Other parameters, including lipid content (L), dry matter (DM), phosphorus (P), and calcium (Ca), did not show any significant differences among the treatment groups. In conclusion, supplementation with 1.00% trehalose enhances feed efficiency, egg weight, and quality, with minimal impact on lipid peroxidation, while potentially providing benefits for gut health and egg quality.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).