基于深度学习的光谱库搜索中错误发现率估计的诱饵光谱预测。

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Journal of Proteome Research Pub Date : 2025-05-02 Epub Date: 2025-04-19 DOI:10.1021/acs.jproteome.4c00304
Chak Ming Jerry Chan, Dominik Madej, Chun Kit Jason Chung, Henry Lam
{"title":"基于深度学习的光谱库搜索中错误发现率估计的诱饵光谱预测。","authors":"Chak Ming Jerry Chan, Dominik Madej, Chun Kit Jason Chung, Henry Lam","doi":"10.1021/acs.jproteome.4c00304","DOIUrl":null,"url":null,"abstract":"<p><p>With the advantage of extensive coverage, predicted spectral libraries are becoming an attractive alternative in proteomic data analysis. As a popular false discovery rate estimation method, target decoy search has been adopted in library search workflows. While existing decoy methods for curated experimental libraries have been tested, their performance in predicted library scenarios remains unknown. Current methods rely on perturbing real spectra templates, limiting the diversity and number of decoy spectra that can be generated for a given library. In this study, we explore the shuffle-and-predict decoy library generation approach, which can generate decoy spectra without the need for template spectra. Our experiments shed light on decoy method performance for predicted library scenarios and demonstrate the quality of predicted decoys in FDR estimation.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":"24 5","pages":"2235-2242"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Prediction of Decoy Spectra for False Discovery Rate Estimation in Spectral Library Searching.\",\"authors\":\"Chak Ming Jerry Chan, Dominik Madej, Chun Kit Jason Chung, Henry Lam\",\"doi\":\"10.1021/acs.jproteome.4c00304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the advantage of extensive coverage, predicted spectral libraries are becoming an attractive alternative in proteomic data analysis. As a popular false discovery rate estimation method, target decoy search has been adopted in library search workflows. While existing decoy methods for curated experimental libraries have been tested, their performance in predicted library scenarios remains unknown. Current methods rely on perturbing real spectra templates, limiting the diversity and number of decoy spectra that can be generated for a given library. In this study, we explore the shuffle-and-predict decoy library generation approach, which can generate decoy spectra without the need for template spectra. Our experiments shed light on decoy method performance for predicted library scenarios and demonstrate the quality of predicted decoys in FDR estimation.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":\"24 5\",\"pages\":\"2235-2242\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jproteome.4c00304\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00304","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

由于具有广泛覆盖的优势,预测谱库正在成为蛋白质组学数据分析的一个有吸引力的替代方案。目标诱饵搜索作为一种流行的错误发现率估计方法,已被广泛应用于图书馆检索工作流程中。虽然现有的诱饵方法已经对策划的实验图书馆进行了测试,但它们在预测图书馆场景中的性能仍然未知。目前的方法依赖于干扰真实光谱模板,限制了可以为给定库生成的诱饵光谱的多样性和数量。在本研究中,我们探索了一种不需要模板谱就能生成诱饵谱的shuffle-and-predict诱饵库生成方法。我们的实验揭示了预测库场景的诱饵方法性能,并证明了FDR估计中预测诱饵的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-Based Prediction of Decoy Spectra for False Discovery Rate Estimation in Spectral Library Searching.

With the advantage of extensive coverage, predicted spectral libraries are becoming an attractive alternative in proteomic data analysis. As a popular false discovery rate estimation method, target decoy search has been adopted in library search workflows. While existing decoy methods for curated experimental libraries have been tested, their performance in predicted library scenarios remains unknown. Current methods rely on perturbing real spectra templates, limiting the diversity and number of decoy spectra that can be generated for a given library. In this study, we explore the shuffle-and-predict decoy library generation approach, which can generate decoy spectra without the need for template spectra. Our experiments shed light on decoy method performance for predicted library scenarios and demonstrate the quality of predicted decoys in FDR estimation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信