Chak Ming Jerry Chan, Dominik Madej, Chun Kit Jason Chung, Henry Lam
{"title":"基于深度学习的光谱库搜索中错误发现率估计的诱饵光谱预测。","authors":"Chak Ming Jerry Chan, Dominik Madej, Chun Kit Jason Chung, Henry Lam","doi":"10.1021/acs.jproteome.4c00304","DOIUrl":null,"url":null,"abstract":"<p><p>With the advantage of extensive coverage, predicted spectral libraries are becoming an attractive alternative in proteomic data analysis. As a popular false discovery rate estimation method, target decoy search has been adopted in library search workflows. While existing decoy methods for curated experimental libraries have been tested, their performance in predicted library scenarios remains unknown. Current methods rely on perturbing real spectra templates, limiting the diversity and number of decoy spectra that can be generated for a given library. In this study, we explore the shuffle-and-predict decoy library generation approach, which can generate decoy spectra without the need for template spectra. Our experiments shed light on decoy method performance for predicted library scenarios and demonstrate the quality of predicted decoys in FDR estimation.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":"24 5","pages":"2235-2242"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Prediction of Decoy Spectra for False Discovery Rate Estimation in Spectral Library Searching.\",\"authors\":\"Chak Ming Jerry Chan, Dominik Madej, Chun Kit Jason Chung, Henry Lam\",\"doi\":\"10.1021/acs.jproteome.4c00304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the advantage of extensive coverage, predicted spectral libraries are becoming an attractive alternative in proteomic data analysis. As a popular false discovery rate estimation method, target decoy search has been adopted in library search workflows. While existing decoy methods for curated experimental libraries have been tested, their performance in predicted library scenarios remains unknown. Current methods rely on perturbing real spectra templates, limiting the diversity and number of decoy spectra that can be generated for a given library. In this study, we explore the shuffle-and-predict decoy library generation approach, which can generate decoy spectra without the need for template spectra. Our experiments shed light on decoy method performance for predicted library scenarios and demonstrate the quality of predicted decoys in FDR estimation.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":\"24 5\",\"pages\":\"2235-2242\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jproteome.4c00304\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00304","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Deep Learning-Based Prediction of Decoy Spectra for False Discovery Rate Estimation in Spectral Library Searching.
With the advantage of extensive coverage, predicted spectral libraries are becoming an attractive alternative in proteomic data analysis. As a popular false discovery rate estimation method, target decoy search has been adopted in library search workflows. While existing decoy methods for curated experimental libraries have been tested, their performance in predicted library scenarios remains unknown. Current methods rely on perturbing real spectra templates, limiting the diversity and number of decoy spectra that can be generated for a given library. In this study, we explore the shuffle-and-predict decoy library generation approach, which can generate decoy spectra without the need for template spectra. Our experiments shed light on decoy method performance for predicted library scenarios and demonstrate the quality of predicted decoys in FDR estimation.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".