Duo-Duo Hu, Guangnan Wei, Ping Yang, Dexin Fu, Kuiliang Li
{"title":"基于质子转移的AIE荧光探针用于Sn2+的比例和选择性检测。","authors":"Duo-Duo Hu, Guangnan Wei, Ping Yang, Dexin Fu, Kuiliang Li","doi":"10.1016/j.talanta.2025.128078","DOIUrl":null,"url":null,"abstract":"<p><p>Detecting Sn<sup>2+</sup> heavy metal ions is crucial for mitigating water pollution and safeguarding human health. This study involved the design and synthesis of a novel fluorescence probe, RTPE-IM, which is a combination of an aggregation-induced emission luminophore (TPE) and rhodamine B. The probe undergoes proton transfer in the presence of Sn<sup>2+</sup> ion, displaying high selectivity and a low detection limit of 0.121 μM. The synthesis and application of this molecule offer a potential strategy for preventing environmental health risks.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"293 ","pages":"128078"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An AIE fluorescence probe for ratiometric and selective detection of Sn<sup>2+</sup> based on proton transfer.\",\"authors\":\"Duo-Duo Hu, Guangnan Wei, Ping Yang, Dexin Fu, Kuiliang Li\",\"doi\":\"10.1016/j.talanta.2025.128078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Detecting Sn<sup>2+</sup> heavy metal ions is crucial for mitigating water pollution and safeguarding human health. This study involved the design and synthesis of a novel fluorescence probe, RTPE-IM, which is a combination of an aggregation-induced emission luminophore (TPE) and rhodamine B. The probe undergoes proton transfer in the presence of Sn<sup>2+</sup> ion, displaying high selectivity and a low detection limit of 0.121 μM. The synthesis and application of this molecule offer a potential strategy for preventing environmental health risks.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"293 \",\"pages\":\"128078\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2025.128078\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.128078","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
An AIE fluorescence probe for ratiometric and selective detection of Sn2+ based on proton transfer.
Detecting Sn2+ heavy metal ions is crucial for mitigating water pollution and safeguarding human health. This study involved the design and synthesis of a novel fluorescence probe, RTPE-IM, which is a combination of an aggregation-induced emission luminophore (TPE) and rhodamine B. The probe undergoes proton transfer in the presence of Sn2+ ion, displaying high selectivity and a low detection limit of 0.121 μM. The synthesis and application of this molecule offer a potential strategy for preventing environmental health risks.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.