8-羟基喹啉钒衍生物在医学上的应用现状及展望。

IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tahmineh Kohanfekr, Camelia Gholamrezazadeh, Hasan Ali Hosseini
{"title":"8-羟基喹啉钒衍生物在医学上的应用现状及展望。","authors":"Tahmineh Kohanfekr, Camelia Gholamrezazadeh, Hasan Ali Hosseini","doi":"10.1007/s10534-025-00683-9","DOIUrl":null,"url":null,"abstract":"<p><p>Vanadium complexes featuring 8-hydroxyquinoline ligands and their derivatives have emerged as a promising class of compounds with potential therapeutic applications, particularly as antimicrobial and anticancer agents. This comprehensive review offers a timely and insightful analysis of the current landscape of vanadium complexes with HQ ligand or its derivatives, whether alone or in combination with organic coligands. This review covers synthetic strategies, and mechanisms that underlie their antibacterial and anticancer activities. A significant focus of this review is the thorough evaluation of the antibacterial and anticancer properties of these complexes, providing an invaluable resource for researchers in the interdisciplinary fields of inorganic chemistry, medicinal chemistry, and drug discovery. By compiling and synthesizing the existing knowledge on vanadium-8-hydroxyquinoline (VO-8HQ) complexes, this review addresses a critical gap in the literature. Ongoing research, including rigorous preclinical and clinical evaluations, is essential for fully exploring the therapeutic potential of this promising class of metallodrugs.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vanadium 8-hydroxyquinoline derivatives in medicine: current state and future outlook.\",\"authors\":\"Tahmineh Kohanfekr, Camelia Gholamrezazadeh, Hasan Ali Hosseini\",\"doi\":\"10.1007/s10534-025-00683-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vanadium complexes featuring 8-hydroxyquinoline ligands and their derivatives have emerged as a promising class of compounds with potential therapeutic applications, particularly as antimicrobial and anticancer agents. This comprehensive review offers a timely and insightful analysis of the current landscape of vanadium complexes with HQ ligand or its derivatives, whether alone or in combination with organic coligands. This review covers synthetic strategies, and mechanisms that underlie their antibacterial and anticancer activities. A significant focus of this review is the thorough evaluation of the antibacterial and anticancer properties of these complexes, providing an invaluable resource for researchers in the interdisciplinary fields of inorganic chemistry, medicinal chemistry, and drug discovery. By compiling and synthesizing the existing knowledge on vanadium-8-hydroxyquinoline (VO-8HQ) complexes, this review addresses a critical gap in the literature. Ongoing research, including rigorous preclinical and clinical evaluations, is essential for fully exploring the therapeutic potential of this promising class of metallodrugs.</p>\",\"PeriodicalId\":491,\"journal\":{\"name\":\"Biometals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometals\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10534-025-00683-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-025-00683-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

以8-羟基喹啉配体及其衍生物为特征的钒配合物已成为一类具有潜在治疗应用前景的化合物,特别是作为抗菌和抗癌药物。本文对钒与HQ配体或其衍生物的配合物(无论是单独的还是与有机配体的结合)的现状进行了及时而深刻的分析。本文综述了其抗菌和抗癌活性的合成策略和机制。本综述的一个重要重点是对这些配合物的抗菌和抗癌特性进行全面评价,为无机化学、药物化学和药物发现等跨学科领域的研究人员提供宝贵的资源。本文通过对钒-8-羟基喹啉(VO-8HQ)配合物的现有知识进行整理和合成,填补了文献中的一个关键空白。正在进行的研究,包括严格的临床前和临床评估,对于充分探索这类有前途的金属药物的治疗潜力至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vanadium 8-hydroxyquinoline derivatives in medicine: current state and future outlook.

Vanadium complexes featuring 8-hydroxyquinoline ligands and their derivatives have emerged as a promising class of compounds with potential therapeutic applications, particularly as antimicrobial and anticancer agents. This comprehensive review offers a timely and insightful analysis of the current landscape of vanadium complexes with HQ ligand or its derivatives, whether alone or in combination with organic coligands. This review covers synthetic strategies, and mechanisms that underlie their antibacterial and anticancer activities. A significant focus of this review is the thorough evaluation of the antibacterial and anticancer properties of these complexes, providing an invaluable resource for researchers in the interdisciplinary fields of inorganic chemistry, medicinal chemistry, and drug discovery. By compiling and synthesizing the existing knowledge on vanadium-8-hydroxyquinoline (VO-8HQ) complexes, this review addresses a critical gap in the literature. Ongoing research, including rigorous preclinical and clinical evaluations, is essential for fully exploring the therapeutic potential of this promising class of metallodrugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometals
Biometals 生物-生化与分子生物学
CiteScore
5.90
自引率
8.60%
发文量
111
审稿时长
3 months
期刊介绍: BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of: - metal ions - metal chelates, - siderophores, - metal-containing proteins - biominerals in all biosystems. - BioMetals rapidly publishes original articles and reviews. BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信