位错诱导的铋纳米颗粒应变改善二氧化碳电还原制甲酸。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-05-13 DOI:10.1002/cssc.202500386
Chengyang Lan, Jianzhi Wang, Shan Guan, Luqi Liu, Rui Zhi, Pengfei Yin, Jing Yang, Hui Liu, Xiwen Du, Cunku Dong
{"title":"位错诱导的铋纳米颗粒应变改善二氧化碳电还原制甲酸。","authors":"Chengyang Lan, Jianzhi Wang, Shan Guan, Luqi Liu, Rui Zhi, Pengfei Yin, Jing Yang, Hui Liu, Xiwen Du, Cunku Dong","doi":"10.1002/cssc.202500386","DOIUrl":null,"url":null,"abstract":"<p><p>Through a solid-electrolyte membrane electrode assembly (MEA) electrolyzer, CO₂ can be electrochemically reduced to feasibly produce liquid formic acid. However, there still lacks of the in-depth exploration into the catalyst design suitable for cathode membrane electrode as a key component in a solid-electrolyte MEA electrolyzer. Herein, a lattice strain-rich bismuth nanoparticle (D-Bi-NPS) integrated with anion exchange membrane is designed to produce formic acid, which can continuously produce formic acid with a concentration of 0.19 M for more than 74 hours at a current density of 100 mA·cm-2. By using this cathode membrane electrode, the Faradaic efficiency for formic acid can reach a maximum of 94.1%, with values exceeding 80% for the majority of the operational time. The improved performance of D-Bi-NPS is attributed to its abundant internal defects, which generate compressive strains that can dramatically accelerate interfacial electron transfer and optimize adsorption strength of intermediate. This study offers a novel approach for the design and development of solid-electrolyte MEA electrolyzer.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500386"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dislocation-induced Strain in Bismuth Nanoparticles for improving Carbon Dioxide Electroreduction to Formic Acid.\",\"authors\":\"Chengyang Lan, Jianzhi Wang, Shan Guan, Luqi Liu, Rui Zhi, Pengfei Yin, Jing Yang, Hui Liu, Xiwen Du, Cunku Dong\",\"doi\":\"10.1002/cssc.202500386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Through a solid-electrolyte membrane electrode assembly (MEA) electrolyzer, CO₂ can be electrochemically reduced to feasibly produce liquid formic acid. However, there still lacks of the in-depth exploration into the catalyst design suitable for cathode membrane electrode as a key component in a solid-electrolyte MEA electrolyzer. Herein, a lattice strain-rich bismuth nanoparticle (D-Bi-NPS) integrated with anion exchange membrane is designed to produce formic acid, which can continuously produce formic acid with a concentration of 0.19 M for more than 74 hours at a current density of 100 mA·cm-2. By using this cathode membrane electrode, the Faradaic efficiency for formic acid can reach a maximum of 94.1%, with values exceeding 80% for the majority of the operational time. The improved performance of D-Bi-NPS is attributed to its abundant internal defects, which generate compressive strains that can dramatically accelerate interfacial electron transfer and optimize adsorption strength of intermediate. This study offers a novel approach for the design and development of solid-electrolyte MEA electrolyzer.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202500386\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202500386\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500386","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过固体电解质膜电极组件(MEA)电解槽,CO₂可以电化学还原为可行的液态甲酸。然而,对于固体电解质MEA电解槽中阴极膜电极这一关键部件的催化剂设计,目前还缺乏深入的探索。本文设计了一种集成负离子交换膜的富晶格型铋纳米粒子(D-Bi-NPS)制备甲酸,在100 mA·cm-2的电流密度下,可连续制备浓度为0.19 M的甲酸超过74小时。使用该阴极膜电极,甲酸的法拉第效率最高可达94.1%,大部分操作时间的法拉第效率均在80%以上。D-Bi-NPS性能的提高归功于其丰富的内部缺陷,这些缺陷产生的压缩应变可以显著加速界面电子转移并优化中间体的吸附强度。本研究为固体电解质MEA电解槽的设计与开发提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dislocation-induced Strain in Bismuth Nanoparticles for improving Carbon Dioxide Electroreduction to Formic Acid.

Through a solid-electrolyte membrane electrode assembly (MEA) electrolyzer, CO₂ can be electrochemically reduced to feasibly produce liquid formic acid. However, there still lacks of the in-depth exploration into the catalyst design suitable for cathode membrane electrode as a key component in a solid-electrolyte MEA electrolyzer. Herein, a lattice strain-rich bismuth nanoparticle (D-Bi-NPS) integrated with anion exchange membrane is designed to produce formic acid, which can continuously produce formic acid with a concentration of 0.19 M for more than 74 hours at a current density of 100 mA·cm-2. By using this cathode membrane electrode, the Faradaic efficiency for formic acid can reach a maximum of 94.1%, with values exceeding 80% for the majority of the operational time. The improved performance of D-Bi-NPS is attributed to its abundant internal defects, which generate compressive strains that can dramatically accelerate interfacial electron transfer and optimize adsorption strength of intermediate. This study offers a novel approach for the design and development of solid-electrolyte MEA electrolyzer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信