Hippo-YAP通路激活促进DFU愈合的机制

IF 5 2区 生物学 Q2 CELL BIOLOGY
Shaochun Zhang, Ye Wang, Xuesong Xiong, Jili Xing, Ke Jing
{"title":"Hippo-YAP通路激活促进DFU愈合的机制","authors":"Shaochun Zhang, Ye Wang, Xuesong Xiong, Jili Xing, Ke Jing","doi":"10.1152/ajpcell.01067.2024","DOIUrl":null,"url":null,"abstract":"<p><p>With the increasing prevalence of diabetes, diabetic foot ulcers (DFU) have become a global health challenge, significantly impacting patients' quality of life and placing a substantial burden on healthcare systems. Among various immune cell subsets, M2-polarized macrophages play a pivotal role in tissue repair and inflammation resolution. This study employs single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing to comprehensively investigate the role of the TFAP2A-LIFR-Hippo-YAP signaling axis in regulating macrophage M2 polarization and its critical function in DFU wound healing. Through scRNA-seq analysis, we identified nine major immune cell subsets in DFU samples, with macrophages emerging as key regulatory cells. In vitro experiments further confirmed that TFAP2A promotes macrophage M2 polarization (evidenced by increased expression of the M2 marker ARG1) and ameliorates endothelial dysfunction by enhancing tube formation, improving migration capacity, and upregulating relevant proteins such as VCAM-1. Moreover, TFAP2A serves as a central regulatory gene for macrophage function in DFU by upregulating LIFR expression and activating the Hippo-YAP signaling pathway, thereby inducing M2 polarization and mitigating endothelial dysfunction. Mouse model experiments further demonstrated that the TFAP2A-LIFR-Hippo-YAP signaling axis accelerates DFU wound healing through the induction of macrophage M2 polarization. This study unveils a novel immunoregulatory role of TFAP2A in DFU and provides a promising therapeutic target for the treatment of chronic diabetic wounds.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic Insights into Hippo-YAP Pathway Activation for Enhanced DFU Healing.\",\"authors\":\"Shaochun Zhang, Ye Wang, Xuesong Xiong, Jili Xing, Ke Jing\",\"doi\":\"10.1152/ajpcell.01067.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the increasing prevalence of diabetes, diabetic foot ulcers (DFU) have become a global health challenge, significantly impacting patients' quality of life and placing a substantial burden on healthcare systems. Among various immune cell subsets, M2-polarized macrophages play a pivotal role in tissue repair and inflammation resolution. This study employs single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing to comprehensively investigate the role of the TFAP2A-LIFR-Hippo-YAP signaling axis in regulating macrophage M2 polarization and its critical function in DFU wound healing. Through scRNA-seq analysis, we identified nine major immune cell subsets in DFU samples, with macrophages emerging as key regulatory cells. In vitro experiments further confirmed that TFAP2A promotes macrophage M2 polarization (evidenced by increased expression of the M2 marker ARG1) and ameliorates endothelial dysfunction by enhancing tube formation, improving migration capacity, and upregulating relevant proteins such as VCAM-1. Moreover, TFAP2A serves as a central regulatory gene for macrophage function in DFU by upregulating LIFR expression and activating the Hippo-YAP signaling pathway, thereby inducing M2 polarization and mitigating endothelial dysfunction. Mouse model experiments further demonstrated that the TFAP2A-LIFR-Hippo-YAP signaling axis accelerates DFU wound healing through the induction of macrophage M2 polarization. This study unveils a novel immunoregulatory role of TFAP2A in DFU and provides a promising therapeutic target for the treatment of chronic diabetic wounds.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.01067.2024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.01067.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着糖尿病患病率的增加,糖尿病足溃疡(DFU)已成为全球健康挑战,严重影响患者的生活质量并给医疗保健系统带来沉重负担。在各种免疫细胞亚群中,m2极化巨噬细胞在组织修复和炎症消退中起着关键作用。本研究采用单细胞RNA测序(scRNA-seq)和大量RNA测序,全面探讨tfap2a - lifr - hippop - yap信号轴在巨噬细胞M2极化调控中的作用及其在DFU创面愈合中的关键功能。通过scRNA-seq分析,我们在DFU样本中鉴定出9个主要的免疫细胞亚群,其中巨噬细胞是关键的调节细胞。体外实验进一步证实,TFAP2A促进巨噬细胞M2极化(M2标记物ARG1表达增加),并通过促进管形成、提高迁移能力、上调VCAM-1等相关蛋白改善内皮功能障碍。此外,TFAP2A在DFU中作为巨噬细胞功能的中心调控基因,通过上调LIFR表达,激活Hippo-YAP信号通路,从而诱导M2极化,减轻内皮功能障碍。小鼠模型实验进一步证明tfap2a - lifr - hippop - yap信号轴通过诱导巨噬细胞M2极化加速DFU创面愈合。本研究揭示了TFAP2A在DFU中的新的免疫调节作用,为慢性糖尿病伤口的治疗提供了一个有希望的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanistic Insights into Hippo-YAP Pathway Activation for Enhanced DFU Healing.

With the increasing prevalence of diabetes, diabetic foot ulcers (DFU) have become a global health challenge, significantly impacting patients' quality of life and placing a substantial burden on healthcare systems. Among various immune cell subsets, M2-polarized macrophages play a pivotal role in tissue repair and inflammation resolution. This study employs single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing to comprehensively investigate the role of the TFAP2A-LIFR-Hippo-YAP signaling axis in regulating macrophage M2 polarization and its critical function in DFU wound healing. Through scRNA-seq analysis, we identified nine major immune cell subsets in DFU samples, with macrophages emerging as key regulatory cells. In vitro experiments further confirmed that TFAP2A promotes macrophage M2 polarization (evidenced by increased expression of the M2 marker ARG1) and ameliorates endothelial dysfunction by enhancing tube formation, improving migration capacity, and upregulating relevant proteins such as VCAM-1. Moreover, TFAP2A serves as a central regulatory gene for macrophage function in DFU by upregulating LIFR expression and activating the Hippo-YAP signaling pathway, thereby inducing M2 polarization and mitigating endothelial dysfunction. Mouse model experiments further demonstrated that the TFAP2A-LIFR-Hippo-YAP signaling axis accelerates DFU wound healing through the induction of macrophage M2 polarization. This study unveils a novel immunoregulatory role of TFAP2A in DFU and provides a promising therapeutic target for the treatment of chronic diabetic wounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
1.80%
发文量
252
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信