氯离子介导的铜纳米颗粒转化为纳米海绵用于低浓度硝酸还原。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-05-12 DOI:10.1002/cssc.202500581
Ke-Xin Li, Yu-Shu Han, Lei Bian, Hao Tian, Jia-Yi Chen, Zhi Ma, Zhong-Li Wang
{"title":"氯离子介导的铜纳米颗粒转化为纳米海绵用于低浓度硝酸还原。","authors":"Ke-Xin Li, Yu-Shu Han, Lei Bian, Hao Tian, Jia-Yi Chen, Zhi Ma, Zhong-Li Wang","doi":"10.1002/cssc.202500581","DOIUrl":null,"url":null,"abstract":"<p><p>Acidic nitrate electroreduction reaction (NO<sub>3</sub> <sup>-</sup>RR) offers a promising route for a sustainable nitrogen cycle. However, achieving high selectivity and efficiency under low-concentration acidic conditions remains challenging. Herein, it is demonstrated that Cu nanosponge can adsorb low-concentration nitric acid (HNO<sub>3</sub>) and efficiently convert it to ammonia (NH<sub>3</sub>). The Cu nanosponge is prepared by Cl<sup>-</sup>-induced reconstruction of porous Cu nanoparticles obtained through dealloying. In a Cl<sup>-</sup>-containing HNO<sub>3</sub> solution, porous Cu nanoparticles undergo chemical oxidation to form CuCl, which reconstructs into a nanosponge through migration and electrochemical reduction, consisting of nanoparticle-supported nanosheets. The nanosponge features abundant porous structures and numerous nanoparticle-nanosheet interfaces, creating a large active surface area and providing adsorption and reaction sites for NO<sub>3</sub> <sup>-</sup>. The optimized Cu nanosponge exhibits a 92% FE for NH<sub>3</sub> at -0.4 V versus RHE and 90% yield of NH<sub>3</sub> in 0.03 M HNO<sub>3</sub>, significantly outperforming Cu nanoparticle (only 66 and 47%). In situ Raman spectroscopy confirms that the nanosponge structure not only enhances NO<sub>3</sub> <sup>-</sup> adsorption but also stabilizes the key NO<sub>2</sub> <sup>-</sup> intermediate. Furthermore, industrial wastewater is simulated to convert low concentrations of nitrate into ammonium nitrate products, which are applied to plant cultivation, effectively promoting plant growth.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2500581"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chloride-Mediated Transformation of Copper Nanoparticles to Nanosponges for Nitric Acid Reduction at Low Concentrations.\",\"authors\":\"Ke-Xin Li, Yu-Shu Han, Lei Bian, Hao Tian, Jia-Yi Chen, Zhi Ma, Zhong-Li Wang\",\"doi\":\"10.1002/cssc.202500581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acidic nitrate electroreduction reaction (NO<sub>3</sub> <sup>-</sup>RR) offers a promising route for a sustainable nitrogen cycle. However, achieving high selectivity and efficiency under low-concentration acidic conditions remains challenging. Herein, it is demonstrated that Cu nanosponge can adsorb low-concentration nitric acid (HNO<sub>3</sub>) and efficiently convert it to ammonia (NH<sub>3</sub>). The Cu nanosponge is prepared by Cl<sup>-</sup>-induced reconstruction of porous Cu nanoparticles obtained through dealloying. In a Cl<sup>-</sup>-containing HNO<sub>3</sub> solution, porous Cu nanoparticles undergo chemical oxidation to form CuCl, which reconstructs into a nanosponge through migration and electrochemical reduction, consisting of nanoparticle-supported nanosheets. The nanosponge features abundant porous structures and numerous nanoparticle-nanosheet interfaces, creating a large active surface area and providing adsorption and reaction sites for NO<sub>3</sub> <sup>-</sup>. The optimized Cu nanosponge exhibits a 92% FE for NH<sub>3</sub> at -0.4 V versus RHE and 90% yield of NH<sub>3</sub> in 0.03 M HNO<sub>3</sub>, significantly outperforming Cu nanoparticle (only 66 and 47%). In situ Raman spectroscopy confirms that the nanosponge structure not only enhances NO<sub>3</sub> <sup>-</sup> adsorption but also stabilizes the key NO<sub>2</sub> <sup>-</sup> intermediate. Furthermore, industrial wastewater is simulated to convert low concentrations of nitrate into ammonium nitrate products, which are applied to plant cultivation, effectively promoting plant growth.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e2500581\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202500581\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500581","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

酸性硝酸电还原反应(NO3-RR)为氮的可持续循环提供了一条有前景的途径。然而,在低浓度酸性条件下实现高选择性和高效率仍然是一个挑战。在此,我们证明了Cu纳米海绵可以吸附低浓度的硝酸(HNO3)并有效地将其转化为氨(NH3)。采用氯化还原法制备了铜纳米海绵。在含Cl- HNO3溶液中,多孔Cu纳米颗粒经过化学氧化形成CuCl, CuCl通过迁移和电化学还原重建成纳米海绵,由纳米颗粒支撑的纳米片组成。纳米海绵具有丰富的多孔结构和众多的纳米颗粒-纳米片界面,创造了大的活性表面积,为NO3-提供了吸附和反应场所。与RHE相比,优化后的Cu纳米海绵在-0.4 V条件下NH3的FE为92%,在0.03 M HNO3条件下NH3的产率为90%,显著优于Cu纳米颗粒(分别为66%和47%)。原位拉曼光谱证实了纳米海绵结构不仅增强了NO3-吸附,而且稳定了关键的NO2-中间体。此外,我们模拟工业废水,将低浓度的硝酸盐转化为硝酸铵产品,应用于植物栽培,有效促进植物生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chloride-Mediated Transformation of Copper Nanoparticles to Nanosponges for Nitric Acid Reduction at Low Concentrations.

Acidic nitrate electroreduction reaction (NO3 -RR) offers a promising route for a sustainable nitrogen cycle. However, achieving high selectivity and efficiency under low-concentration acidic conditions remains challenging. Herein, it is demonstrated that Cu nanosponge can adsorb low-concentration nitric acid (HNO3) and efficiently convert it to ammonia (NH3). The Cu nanosponge is prepared by Cl--induced reconstruction of porous Cu nanoparticles obtained through dealloying. In a Cl--containing HNO3 solution, porous Cu nanoparticles undergo chemical oxidation to form CuCl, which reconstructs into a nanosponge through migration and electrochemical reduction, consisting of nanoparticle-supported nanosheets. The nanosponge features abundant porous structures and numerous nanoparticle-nanosheet interfaces, creating a large active surface area and providing adsorption and reaction sites for NO3 -. The optimized Cu nanosponge exhibits a 92% FE for NH3 at -0.4 V versus RHE and 90% yield of NH3 in 0.03 M HNO3, significantly outperforming Cu nanoparticle (only 66 and 47%). In situ Raman spectroscopy confirms that the nanosponge structure not only enhances NO3 - adsorption but also stabilizes the key NO2 - intermediate. Furthermore, industrial wastewater is simulated to convert low concentrations of nitrate into ammonium nitrate products, which are applied to plant cultivation, effectively promoting plant growth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信