Ling Zhou, Xiao-Xue Pei, Wei Gong, He Sheng and Zhu-Sheng Yang
{"title":"光诱导n -杂环氮催化α-氯酯单电子还原合成菲咯啶。","authors":"Ling Zhou, Xiao-Xue Pei, Wei Gong, He Sheng and Zhu-Sheng Yang","doi":"10.1039/D5OB00530B","DOIUrl":null,"url":null,"abstract":"<p >Visible-light photoredox catalysis has revolutionized synthetic methodologies by enabling sustainable radical-mediated transformations under mild conditions. Herein, we report a catalytic protocol employing N-heterocyclic nitrenium (NHN) iodide salts to drive the photoreduction of α-chloro esters, generating alkyl radicals that participate in annulation with 2-isocyanobiaryls for the modular synthesis of phenanthridine derivatives. This approach is characterized by easily available NHNs and operational simplicity.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" 21","pages":" 5122-5125"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoinduced N-heterocyclic nitrenium-catalyzed single electron reduction of α-chloro esters for phenanthridine synthesis†\",\"authors\":\"Ling Zhou, Xiao-Xue Pei, Wei Gong, He Sheng and Zhu-Sheng Yang\",\"doi\":\"10.1039/D5OB00530B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Visible-light photoredox catalysis has revolutionized synthetic methodologies by enabling sustainable radical-mediated transformations under mild conditions. Herein, we report a catalytic protocol employing N-heterocyclic nitrenium (NHN) iodide salts to drive the photoreduction of α-chloro esters, generating alkyl radicals that participate in annulation with 2-isocyanobiaryls for the modular synthesis of phenanthridine derivatives. This approach is characterized by easily available NHNs and operational simplicity.</p>\",\"PeriodicalId\":96,\"journal\":{\"name\":\"Organic & Biomolecular Chemistry\",\"volume\":\" 21\",\"pages\":\" 5122-5125\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic & Biomolecular Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ob/d5ob00530b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ob/d5ob00530b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Photoinduced N-heterocyclic nitrenium-catalyzed single electron reduction of α-chloro esters for phenanthridine synthesis†
Visible-light photoredox catalysis has revolutionized synthetic methodologies by enabling sustainable radical-mediated transformations under mild conditions. Herein, we report a catalytic protocol employing N-heterocyclic nitrenium (NHN) iodide salts to drive the photoreduction of α-chloro esters, generating alkyl radicals that participate in annulation with 2-isocyanobiaryls for the modular synthesis of phenanthridine derivatives. This approach is characterized by easily available NHNs and operational simplicity.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.