Ingo A Müller, Filip Thörn, Samyuktha Rajan, Remi-André Olsen, Per G P Ericson, Valentina Peona, Brian Tilston Smith, Gibson Maiah, Bonny Koane, Bulisa Iova, Mozes P K Blom, Martin Irestedt, Knud A Jønsson
{"title":"新几内亚蜜虫群的短暂物种形成(鸟类:蜜虫科)。","authors":"Ingo A Müller, Filip Thörn, Samyuktha Rajan, Remi-André Olsen, Per G P Ericson, Valentina Peona, Brian Tilston Smith, Gibson Maiah, Bonny Koane, Bulisa Iova, Mozes P K Blom, Martin Irestedt, Knud A Jønsson","doi":"10.1111/mec.17760","DOIUrl":null,"url":null,"abstract":"<p><p>Speciation is a fundamental concept in evolutionary biology, and understanding the mechanisms driving speciation remains the foremost research topic within this field. Hybridisation is often involved in speciation and can influence its rates, potentially accelerating, decelerating or even reversing the process. This study investigates the evolutionary history of the New Guinean bird genus Melidectes, consisting of six species that inhabit various montane regions at different elevations. While most Melidectes species have allopatric distributions, two species overlap in the central mountain range and hybridise. However, plumage differences and elevational adaptations are assumed to maintain the species' boundaries. Utilising specimens from natural history collections and comprehensive genomic analyses, including a de novo genome assembly, we characterise allopatric speciation patterns within the genus and highlight how future speciation could potentially be driven by climate change. Contrary to previous hypotheses, our findings suggest that in the two distributionally overlapping species, phenotypic differences do not prevent gene flow. We find limited acoustic differentiation and extensive admixture across most of their distributions. Divergence and admixture levels conform poorly to the current taxonomy and follow a geographical pattern in which the most isolated populations at the ends of the distributions are most divergent and show least admixture. However, in contrast, their mitochondrial genomes do group in accordance with species identity, namely, into two deeply divergent lineages. We propose that this system demonstrates the ephemeral nature of speciation, in which two incipient species have started mixing extensively as they came into secondary contact, resulting in nearly complete fusion into a single lineage.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17760"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ephemeral Speciation in a New Guinean Honeyeater Complex (Aves: Melidectes).\",\"authors\":\"Ingo A Müller, Filip Thörn, Samyuktha Rajan, Remi-André Olsen, Per G P Ericson, Valentina Peona, Brian Tilston Smith, Gibson Maiah, Bonny Koane, Bulisa Iova, Mozes P K Blom, Martin Irestedt, Knud A Jønsson\",\"doi\":\"10.1111/mec.17760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Speciation is a fundamental concept in evolutionary biology, and understanding the mechanisms driving speciation remains the foremost research topic within this field. Hybridisation is often involved in speciation and can influence its rates, potentially accelerating, decelerating or even reversing the process. This study investigates the evolutionary history of the New Guinean bird genus Melidectes, consisting of six species that inhabit various montane regions at different elevations. While most Melidectes species have allopatric distributions, two species overlap in the central mountain range and hybridise. However, plumage differences and elevational adaptations are assumed to maintain the species' boundaries. Utilising specimens from natural history collections and comprehensive genomic analyses, including a de novo genome assembly, we characterise allopatric speciation patterns within the genus and highlight how future speciation could potentially be driven by climate change. Contrary to previous hypotheses, our findings suggest that in the two distributionally overlapping species, phenotypic differences do not prevent gene flow. We find limited acoustic differentiation and extensive admixture across most of their distributions. Divergence and admixture levels conform poorly to the current taxonomy and follow a geographical pattern in which the most isolated populations at the ends of the distributions are most divergent and show least admixture. However, in contrast, their mitochondrial genomes do group in accordance with species identity, namely, into two deeply divergent lineages. We propose that this system demonstrates the ephemeral nature of speciation, in which two incipient species have started mixing extensively as they came into secondary contact, resulting in nearly complete fusion into a single lineage.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\" \",\"pages\":\"e17760\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mec.17760\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17760","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ephemeral Speciation in a New Guinean Honeyeater Complex (Aves: Melidectes).
Speciation is a fundamental concept in evolutionary biology, and understanding the mechanisms driving speciation remains the foremost research topic within this field. Hybridisation is often involved in speciation and can influence its rates, potentially accelerating, decelerating or even reversing the process. This study investigates the evolutionary history of the New Guinean bird genus Melidectes, consisting of six species that inhabit various montane regions at different elevations. While most Melidectes species have allopatric distributions, two species overlap in the central mountain range and hybridise. However, plumage differences and elevational adaptations are assumed to maintain the species' boundaries. Utilising specimens from natural history collections and comprehensive genomic analyses, including a de novo genome assembly, we characterise allopatric speciation patterns within the genus and highlight how future speciation could potentially be driven by climate change. Contrary to previous hypotheses, our findings suggest that in the two distributionally overlapping species, phenotypic differences do not prevent gene flow. We find limited acoustic differentiation and extensive admixture across most of their distributions. Divergence and admixture levels conform poorly to the current taxonomy and follow a geographical pattern in which the most isolated populations at the ends of the distributions are most divergent and show least admixture. However, in contrast, their mitochondrial genomes do group in accordance with species identity, namely, into two deeply divergent lineages. We propose that this system demonstrates the ephemeral nature of speciation, in which two incipient species have started mixing extensively as they came into secondary contact, resulting in nearly complete fusion into a single lineage.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms