Alexandra S Bubnova, Anna N Philippova, Pavel S Gribanov, Alexander F Smol'yakov, Sergey N Osipov, Daria V Vorobyeva
{"title":"Pd(II)催化含烯丙基α-氨基酸衍生物与芳基硼酸的区域选择性氢芳基化反应。","authors":"Alexandra S Bubnova, Anna N Philippova, Pavel S Gribanov, Alexander F Smol'yakov, Sergey N Osipov, Daria V Vorobyeva","doi":"10.1039/d5ob00622h","DOIUrl":null,"url":null,"abstract":"<p><p>A convenient pathway to a new family of α,α-disubstituted α-amino acid derivatives bearing an aryl alkene moiety at the side chain has been developed. This method is based on hydroarylation of functional allenes with aryl boronic acids under Pd(II)/dppf catalysis. The studied reactions represent the first example of the metal-catalyzed arylation of allenyl-containing α-amino acid derivatives and allow for the efficient assembly of biologically valuable molecules under mild conditions in good yields and high regio- and stereoselectivity.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pd(II)-catalyzed regioselective hydroarylation of allenyl-containing α-amino acid derivatives with aryl boronic acids.\",\"authors\":\"Alexandra S Bubnova, Anna N Philippova, Pavel S Gribanov, Alexander F Smol'yakov, Sergey N Osipov, Daria V Vorobyeva\",\"doi\":\"10.1039/d5ob00622h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A convenient pathway to a new family of α,α-disubstituted α-amino acid derivatives bearing an aryl alkene moiety at the side chain has been developed. This method is based on hydroarylation of functional allenes with aryl boronic acids under Pd(II)/dppf catalysis. The studied reactions represent the first example of the metal-catalyzed arylation of allenyl-containing α-amino acid derivatives and allow for the efficient assembly of biologically valuable molecules under mild conditions in good yields and high regio- and stereoselectivity.</p>\",\"PeriodicalId\":96,\"journal\":{\"name\":\"Organic & Biomolecular Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic & Biomolecular Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5ob00622h\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5ob00622h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Pd(II)-catalyzed regioselective hydroarylation of allenyl-containing α-amino acid derivatives with aryl boronic acids.
A convenient pathway to a new family of α,α-disubstituted α-amino acid derivatives bearing an aryl alkene moiety at the side chain has been developed. This method is based on hydroarylation of functional allenes with aryl boronic acids under Pd(II)/dppf catalysis. The studied reactions represent the first example of the metal-catalyzed arylation of allenyl-containing α-amino acid derivatives and allow for the efficient assembly of biologically valuable molecules under mild conditions in good yields and high regio- and stereoselectivity.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.