{"title":"氢键对7-二乙基氨基硫代香豆素超快速体系间交叉的影响。","authors":"Abhijit Dutta, Suman Bhowmik, Sujit Kumar Ghosh, Vaidhyanathan Ramamurthy, Pratik Sen","doi":"10.1021/acs.jpca.5c00901","DOIUrl":null,"url":null,"abstract":"<p><p>Thiocarbonyls exhibit unique photophysical properties, characterized by rapid intersystem crossing (ISC) due to favorable singlet-triplet energetics and enhanced spin-orbit coupling. However, the role of hydrogen bonding in modulating the ISC remains underexplored. This study investigates the effect of solvent-solute hydrogen bonding on the ISC dynamics of 7-(diethylamino)-4-methyl-2-sulfanylidene-2H-chromen-2-one (thiocoumarin 1, TC1) using steady-state and time-resolved spectroscopy, complemented by theoretical calculations. Experimental data reveal that in methanol, hydrogen bonding leads to increased fluorescence quantum yield, prolonged singlet-state lifetime, and reduced triplet yield compared to aprotic acetonitrile. Time-resolved spectroscopy identifies an additional long-lived emissive singlet state in methanol, attributed to a hydrogen-bonded state, which slows ISC. Theoretical calculations demonstrate that hydrogen bonding alters the electronic structure and constrains ISC along key nuclear coordinates, including the C═S bond vibration and dihedral angles, leading to decreased triplet formation. These findings provide mechanistic insights into hydrogen-bonding-mediated control of ISC in thiocoumarins, with implications for designing functional materials with tunable photophysical properties.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"4414-4425"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Hydrogen Bonding on Ultrafast Intersystem Crossing in 7-Diethylaminothiocoumarin.\",\"authors\":\"Abhijit Dutta, Suman Bhowmik, Sujit Kumar Ghosh, Vaidhyanathan Ramamurthy, Pratik Sen\",\"doi\":\"10.1021/acs.jpca.5c00901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thiocarbonyls exhibit unique photophysical properties, characterized by rapid intersystem crossing (ISC) due to favorable singlet-triplet energetics and enhanced spin-orbit coupling. However, the role of hydrogen bonding in modulating the ISC remains underexplored. This study investigates the effect of solvent-solute hydrogen bonding on the ISC dynamics of 7-(diethylamino)-4-methyl-2-sulfanylidene-2H-chromen-2-one (thiocoumarin 1, TC1) using steady-state and time-resolved spectroscopy, complemented by theoretical calculations. Experimental data reveal that in methanol, hydrogen bonding leads to increased fluorescence quantum yield, prolonged singlet-state lifetime, and reduced triplet yield compared to aprotic acetonitrile. Time-resolved spectroscopy identifies an additional long-lived emissive singlet state in methanol, attributed to a hydrogen-bonded state, which slows ISC. Theoretical calculations demonstrate that hydrogen bonding alters the electronic structure and constrains ISC along key nuclear coordinates, including the C═S bond vibration and dihedral angles, leading to decreased triplet formation. These findings provide mechanistic insights into hydrogen-bonding-mediated control of ISC in thiocoumarins, with implications for designing functional materials with tunable photophysical properties.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\" \",\"pages\":\"4414-4425\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.5c00901\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.5c00901","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Effect of Hydrogen Bonding on Ultrafast Intersystem Crossing in 7-Diethylaminothiocoumarin.
Thiocarbonyls exhibit unique photophysical properties, characterized by rapid intersystem crossing (ISC) due to favorable singlet-triplet energetics and enhanced spin-orbit coupling. However, the role of hydrogen bonding in modulating the ISC remains underexplored. This study investigates the effect of solvent-solute hydrogen bonding on the ISC dynamics of 7-(diethylamino)-4-methyl-2-sulfanylidene-2H-chromen-2-one (thiocoumarin 1, TC1) using steady-state and time-resolved spectroscopy, complemented by theoretical calculations. Experimental data reveal that in methanol, hydrogen bonding leads to increased fluorescence quantum yield, prolonged singlet-state lifetime, and reduced triplet yield compared to aprotic acetonitrile. Time-resolved spectroscopy identifies an additional long-lived emissive singlet state in methanol, attributed to a hydrogen-bonded state, which slows ISC. Theoretical calculations demonstrate that hydrogen bonding alters the electronic structure and constrains ISC along key nuclear coordinates, including the C═S bond vibration and dihedral angles, leading to decreased triplet formation. These findings provide mechanistic insights into hydrogen-bonding-mediated control of ISC in thiocoumarins, with implications for designing functional materials with tunable photophysical properties.
期刊介绍:
The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.