热响应纳米纤维在皮肤修复中激活成纤维细胞的动态机械刺激。

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Xuran Guo, Ying Gao, Jiajia Yu, Sha Qiu, Xiaoli Wang, Shasha Wang, Chunling Zhang, Bingcheng Yi, Yinghua Gao
{"title":"热响应纳米纤维在皮肤修复中激活成纤维细胞的动态机械刺激。","authors":"Xuran Guo, Ying Gao, Jiajia Yu, Sha Qiu, Xiaoli Wang, Shasha Wang, Chunling Zhang, Bingcheng Yi, Yinghua Gao","doi":"10.1002/adhm.202500277","DOIUrl":null,"url":null,"abstract":"<p><p>Substrate stiffness regulates fibroblast phenotype through focal adhesion-mediated mechanotransduction pathways to facilitate tissue repair and regeneration. To analyze the effects of dynamic mechanical stimulation of substrates on cell behavior and skin wound healing, collagen-like hydrogel nanofibers are fabricated using coaxial electrospinning of gelatin methacryloyl (GelMA) and poly-L-lactic acid (PLLA). These nanofibers are then grafted with thermoresponsive poly(N-vinylcaprolactam) (PNVCL) via dehydration condensation reaction, providing temperature-dependent mechanical signals. The incorporation of PLLA significantly enhanced the mechanical properties of the GelMA hydrogel nanofibers, while the subsequent grafting of PNVCL effectively reduced the swelling ratio and porosity. Upon exposure to temperatures above the lowest critical solution temperature (LCST), PNVCL molecules underwent a phase transition and self-contraction, improving mechanical properties by forming robust hydrogen bonds with GelMA and expelling water molecules from the polymer matrix. This dynamic mechanical stimulation further promoted cytoskeletal remodeling of mouse skin fibroblasts (MSFs) without significantly affecting cell proliferation and migration. Additionally, it stimulated the differentiation of fibroblasts into myofibroblasts, thereby enhancing extracellular matrix secretion and skin regeneration in vivo. Overall, the engineering of thermoresponsive hydrogel nanofibers with dynamic mechanical stimulation introduces a novel design paradigm in functional tissue engineering, enabling precise regulation of cellular behaviors for effective skin wound healing.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2500277"},"PeriodicalIF":10.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Mechanical Stimulation of Thermoresponsive Nanofibers for Activation of Fibroblasts in Skin Repair.\",\"authors\":\"Xuran Guo, Ying Gao, Jiajia Yu, Sha Qiu, Xiaoli Wang, Shasha Wang, Chunling Zhang, Bingcheng Yi, Yinghua Gao\",\"doi\":\"10.1002/adhm.202500277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Substrate stiffness regulates fibroblast phenotype through focal adhesion-mediated mechanotransduction pathways to facilitate tissue repair and regeneration. To analyze the effects of dynamic mechanical stimulation of substrates on cell behavior and skin wound healing, collagen-like hydrogel nanofibers are fabricated using coaxial electrospinning of gelatin methacryloyl (GelMA) and poly-L-lactic acid (PLLA). These nanofibers are then grafted with thermoresponsive poly(N-vinylcaprolactam) (PNVCL) via dehydration condensation reaction, providing temperature-dependent mechanical signals. The incorporation of PLLA significantly enhanced the mechanical properties of the GelMA hydrogel nanofibers, while the subsequent grafting of PNVCL effectively reduced the swelling ratio and porosity. Upon exposure to temperatures above the lowest critical solution temperature (LCST), PNVCL molecules underwent a phase transition and self-contraction, improving mechanical properties by forming robust hydrogen bonds with GelMA and expelling water molecules from the polymer matrix. This dynamic mechanical stimulation further promoted cytoskeletal remodeling of mouse skin fibroblasts (MSFs) without significantly affecting cell proliferation and migration. Additionally, it stimulated the differentiation of fibroblasts into myofibroblasts, thereby enhancing extracellular matrix secretion and skin regeneration in vivo. Overall, the engineering of thermoresponsive hydrogel nanofibers with dynamic mechanical stimulation introduces a novel design paradigm in functional tissue engineering, enabling precise regulation of cellular behaviors for effective skin wound healing.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2500277\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202500277\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202500277","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

基底硬度通过局灶黏附介导的机械转导途径调节成纤维细胞表型,促进组织修复和再生。为了分析底物的动态机械刺激对细胞行为和皮肤伤口愈合的影响,采用同轴静电纺丝法制备了明胶甲基丙烯酰(GelMA)和聚l -乳酸(PLLA)。然后通过脱水缩合反应将这些纳米纤维接枝到热敏性聚(n -乙烯基己内酰胺)(PNVCL)上,提供与温度相关的机械信号。PLLA的掺入显著提高了GelMA水凝胶纳米纤维的力学性能,而接枝PNVCL则有效降低了膨胀率和孔隙率。当暴露在高于最低临界溶液温度(LCST)的温度下时,PNVCL分子经历了相变和自收缩,通过与GelMA形成坚固的氢键并将水分子从聚合物基质中排出来改善机械性能。这种动态机械刺激进一步促进了小鼠皮肤成纤维细胞(MSFs)的细胞骨架重塑,而不显著影响细胞的增殖和迁移。此外,它刺激成纤维细胞向肌成纤维细胞分化,从而促进细胞外基质分泌和体内皮肤再生。总之,热响应水凝胶纳米纤维的动态机械刺激工程在功能组织工程中引入了一种新的设计范式,能够精确调节细胞行为,从而有效地实现皮肤伤口愈合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Mechanical Stimulation of Thermoresponsive Nanofibers for Activation of Fibroblasts in Skin Repair.

Substrate stiffness regulates fibroblast phenotype through focal adhesion-mediated mechanotransduction pathways to facilitate tissue repair and regeneration. To analyze the effects of dynamic mechanical stimulation of substrates on cell behavior and skin wound healing, collagen-like hydrogel nanofibers are fabricated using coaxial electrospinning of gelatin methacryloyl (GelMA) and poly-L-lactic acid (PLLA). These nanofibers are then grafted with thermoresponsive poly(N-vinylcaprolactam) (PNVCL) via dehydration condensation reaction, providing temperature-dependent mechanical signals. The incorporation of PLLA significantly enhanced the mechanical properties of the GelMA hydrogel nanofibers, while the subsequent grafting of PNVCL effectively reduced the swelling ratio and porosity. Upon exposure to temperatures above the lowest critical solution temperature (LCST), PNVCL molecules underwent a phase transition and self-contraction, improving mechanical properties by forming robust hydrogen bonds with GelMA and expelling water molecules from the polymer matrix. This dynamic mechanical stimulation further promoted cytoskeletal remodeling of mouse skin fibroblasts (MSFs) without significantly affecting cell proliferation and migration. Additionally, it stimulated the differentiation of fibroblasts into myofibroblasts, thereby enhancing extracellular matrix secretion and skin regeneration in vivo. Overall, the engineering of thermoresponsive hydrogel nanofibers with dynamic mechanical stimulation introduces a novel design paradigm in functional tissue engineering, enabling precise regulation of cellular behaviors for effective skin wound healing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信