Ag(110)衬底上一维磷纳米带的外延生长:五边形性质和界面附着原子在实现一维磷体系中的重要作用。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Wenjun Wu, Taotao Liu, Ji Zhang, Yue Xie, Lingfeng Zhang, Xinmao Yin, Shuo Sun
{"title":"Ag(110)衬底上一维磷纳米带的外延生长:五边形性质和界面附着原子在实现一维磷体系中的重要作用。","authors":"Wenjun Wu, Taotao Liu, Ji Zhang, Yue Xie, Lingfeng Zhang, Xinmao Yin, Shuo Sun","doi":"10.1002/smtd.202500193","DOIUrl":null,"url":null,"abstract":"<p><p>Controlling the dimensionality plays a critical role in manipulating the electronic structures and the emergent novel quantum properties. Despite intensive reports on controlling and fabricating 2D materials, the investigation of fabricating well-controlled 1D materials system remains insufficient. Here, through a comprehensive investigation with the combination of scanning tunneling microscopy and first-principles calculations, it reveals that the magic pentagonal nature plays a vital role in stabilizing the 1D phosphorus nanoribbons (PNRs), as revealed by the binding energies and bonding characteristics of 0D and 1D models with exceptional stability in pentagonal and hexagonal configurations. Besides, another 1D PNRs are produced by introducing the interfacial silver (Ag) adatoms, at a higher thermal annealing temperature. The latter demonstrates the interfacial Ag adatoms and the pentagonal nature facilitate charge density saturation, which collectively reinforces the 1D structural stability. These findings convincingly open perspectives for designing 1D phosphorus-based and other group V elemental materials, offering prospects for exploring exotic physical phenomena.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500193"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epitaxial Growth of 1D Phosphorus Nanoribbons on Ag(110) Substrate: the Essential Role of Pentagonal Nature and Interfacial Adatoms in Realizing 1D Phosphorus Systems.\",\"authors\":\"Wenjun Wu, Taotao Liu, Ji Zhang, Yue Xie, Lingfeng Zhang, Xinmao Yin, Shuo Sun\",\"doi\":\"10.1002/smtd.202500193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Controlling the dimensionality plays a critical role in manipulating the electronic structures and the emergent novel quantum properties. Despite intensive reports on controlling and fabricating 2D materials, the investigation of fabricating well-controlled 1D materials system remains insufficient. Here, through a comprehensive investigation with the combination of scanning tunneling microscopy and first-principles calculations, it reveals that the magic pentagonal nature plays a vital role in stabilizing the 1D phosphorus nanoribbons (PNRs), as revealed by the binding energies and bonding characteristics of 0D and 1D models with exceptional stability in pentagonal and hexagonal configurations. Besides, another 1D PNRs are produced by introducing the interfacial silver (Ag) adatoms, at a higher thermal annealing temperature. The latter demonstrates the interfacial Ag adatoms and the pentagonal nature facilitate charge density saturation, which collectively reinforces the 1D structural stability. These findings convincingly open perspectives for designing 1D phosphorus-based and other group V elemental materials, offering prospects for exploring exotic physical phenomena.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2500193\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202500193\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500193","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

维数的控制对于操纵电子结构和产生新的量子特性起着至关重要的作用。尽管在控制和制造二维材料方面有大量报道,但对制造良好控制的一维材料系统的研究仍然不足。本文通过扫描隧道显微镜和第一性原理计算相结合的综合研究,揭示了神奇的五边形性质在稳定一维磷纳米带(PNRs)中起着至关重要的作用,这是由0D和1D模型在五边形和六边形构型下具有优异稳定性的结合能和键合特征所揭示的。此外,在较高的热退火温度下,通过引入界面银(Ag)原子制备了另一种一维pnr。后者表明界面银原子和五角形性质有利于电荷密度饱和,共同增强了一维结构的稳定性。这些发现令人信服地为设计一维磷基和其他V族元素材料开辟了前景,为探索奇异的物理现象提供了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epitaxial Growth of 1D Phosphorus Nanoribbons on Ag(110) Substrate: the Essential Role of Pentagonal Nature and Interfacial Adatoms in Realizing 1D Phosphorus Systems.

Controlling the dimensionality plays a critical role in manipulating the electronic structures and the emergent novel quantum properties. Despite intensive reports on controlling and fabricating 2D materials, the investigation of fabricating well-controlled 1D materials system remains insufficient. Here, through a comprehensive investigation with the combination of scanning tunneling microscopy and first-principles calculations, it reveals that the magic pentagonal nature plays a vital role in stabilizing the 1D phosphorus nanoribbons (PNRs), as revealed by the binding energies and bonding characteristics of 0D and 1D models with exceptional stability in pentagonal and hexagonal configurations. Besides, another 1D PNRs are produced by introducing the interfacial silver (Ag) adatoms, at a higher thermal annealing temperature. The latter demonstrates the interfacial Ag adatoms and the pentagonal nature facilitate charge density saturation, which collectively reinforces the 1D structural stability. These findings convincingly open perspectives for designing 1D phosphorus-based and other group V elemental materials, offering prospects for exploring exotic physical phenomena.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信