可移动聚合物支架内纳米限制金属卤化物钙钛矿结晶。

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Crystal Growth & Design Pub Date : 2025-04-14 eCollection Date: 2025-05-07 DOI:10.1021/acs.cgd.5c00073
Mia Klopfenstein, Lance Emry, Pulkita Jain, Aida Alaei, Ben Schmelmer, Andrew Chou, Trinanjana Mandal, Min-Woo Kim, Eray S Aydil, Tsengming Chou, Stephanie S Lee
{"title":"可移动聚合物支架内纳米限制金属卤化物钙钛矿结晶。","authors":"Mia Klopfenstein, Lance Emry, Pulkita Jain, Aida Alaei, Ben Schmelmer, Andrew Chou, Trinanjana Mandal, Min-Woo Kim, Eray S Aydil, Tsengming Chou, Stephanie S Lee","doi":"10.1021/acs.cgd.5c00073","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoconfining crystallization to access metastable polymorphs and prescribe crystal orientations typically involves filling inert nanoporous scaffolds with target compounds, resulting in isolated nanocrystals. Such crystal-scaffold composites are unsuitable for optoelectronic devices that require interconnected crystalline pathways for charge transport. Here, we reverse the order of fabricating crystal-scaffold composites by first electrospinning interconnected networks of amorphous methylammonium lead iodide (MAPbI<sub>3</sub>) precursor nanofibers, then introducing a poly(methyl methacrylate) (PMMA) scaffold by spin coating from an antisolvent for MAPbI<sub>3</sub>. PMMA suppresses MAPbI<sub>3</sub> crystal blooming from the fiber surface during thermal annealing, instead promoting the formation of densely packed polycrystalline networks of MAPbI<sub>3</sub> crystals at the fiber/PMMA interface. Near-IR photodetectors comprising densely packed MAPbI<sub>3</sub> nanocrystals grown within a PMMA scaffold in a coplanar electrode geometry exhibit photocurrents up to 60 times larger than those comprising fibers annealed without PMMA. These results indicate that MAPbI<sub>3</sub> crystals form a percolated network for charge carriers to flow through PMMA-confined fibers, resulting in significantly improved photodetector performance.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 9","pages":"3003-3012"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063054/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nanoconfined Metal Halide Perovskite Crystallization within Removable Polymer Scaffolds.\",\"authors\":\"Mia Klopfenstein, Lance Emry, Pulkita Jain, Aida Alaei, Ben Schmelmer, Andrew Chou, Trinanjana Mandal, Min-Woo Kim, Eray S Aydil, Tsengming Chou, Stephanie S Lee\",\"doi\":\"10.1021/acs.cgd.5c00073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanoconfining crystallization to access metastable polymorphs and prescribe crystal orientations typically involves filling inert nanoporous scaffolds with target compounds, resulting in isolated nanocrystals. Such crystal-scaffold composites are unsuitable for optoelectronic devices that require interconnected crystalline pathways for charge transport. Here, we reverse the order of fabricating crystal-scaffold composites by first electrospinning interconnected networks of amorphous methylammonium lead iodide (MAPbI<sub>3</sub>) precursor nanofibers, then introducing a poly(methyl methacrylate) (PMMA) scaffold by spin coating from an antisolvent for MAPbI<sub>3</sub>. PMMA suppresses MAPbI<sub>3</sub> crystal blooming from the fiber surface during thermal annealing, instead promoting the formation of densely packed polycrystalline networks of MAPbI<sub>3</sub> crystals at the fiber/PMMA interface. Near-IR photodetectors comprising densely packed MAPbI<sub>3</sub> nanocrystals grown within a PMMA scaffold in a coplanar electrode geometry exhibit photocurrents up to 60 times larger than those comprising fibers annealed without PMMA. These results indicate that MAPbI<sub>3</sub> crystals form a percolated network for charge carriers to flow through PMMA-confined fibers, resulting in significantly improved photodetector performance.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"25 9\",\"pages\":\"3003-3012\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063054/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.cgd.5c00073\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/7 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.cgd.5c00073","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了获得亚稳多晶和规定晶体取向,纳米限制结晶通常涉及用目标化合物填充惰性纳米多孔支架,从而产生分离的纳米晶体。这种晶体支架复合材料不适用于需要相互连接的晶体通道进行电荷传输的光电器件。在这里,我们颠倒了晶体支架复合材料的制造顺序,首先静电纺丝无定形甲基碘化铅(MAPbI3)前驱体纳米纤维的互连网络,然后通过自旋涂层从MAPbI3的抗溶剂中引入聚甲基丙烯酸甲酯(PMMA)支架。在热退火过程中,PMMA抑制MAPbI3晶体从纤维表面绽放,而促进MAPbI3晶体在纤维/PMMA界面形成密集排列的多晶网络。在共面电极几何结构的PMMA支架内生长的密集排列的MAPbI3纳米晶体组成的近红外光电探测器,其光电流比不含PMMA退火的纤维组成的探测器大60倍。这些结果表明,MAPbI3晶体形成了一个渗透网络,使电荷载流子流过pmma约束的光纤,从而显著提高了光电探测器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanoconfined Metal Halide Perovskite Crystallization within Removable Polymer Scaffolds.

Nanoconfining crystallization to access metastable polymorphs and prescribe crystal orientations typically involves filling inert nanoporous scaffolds with target compounds, resulting in isolated nanocrystals. Such crystal-scaffold composites are unsuitable for optoelectronic devices that require interconnected crystalline pathways for charge transport. Here, we reverse the order of fabricating crystal-scaffold composites by first electrospinning interconnected networks of amorphous methylammonium lead iodide (MAPbI3) precursor nanofibers, then introducing a poly(methyl methacrylate) (PMMA) scaffold by spin coating from an antisolvent for MAPbI3. PMMA suppresses MAPbI3 crystal blooming from the fiber surface during thermal annealing, instead promoting the formation of densely packed polycrystalline networks of MAPbI3 crystals at the fiber/PMMA interface. Near-IR photodetectors comprising densely packed MAPbI3 nanocrystals grown within a PMMA scaffold in a coplanar electrode geometry exhibit photocurrents up to 60 times larger than those comprising fibers annealed without PMMA. These results indicate that MAPbI3 crystals form a percolated network for charge carriers to flow through PMMA-confined fibers, resulting in significantly improved photodetector performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信